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Review



Reinforcement learning (RL)

• Learning from experience in the world

 environment 

 agent 

 state st 
 reward rt 

 action at 

• Formalization as Markov decision process
S state space
A action space

P(s0|s,a) transition probabilities
R(s) reward function

MDP {S,A,P(s0|s,a),R(s)}
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Decision-making in MDPs

• Definition

A policy ⇡ : S ! A is a mapping of states to actions.
In this class we will only consider deterministic policies.

• Number of policies

If there are |A| possible actions in each of |S| states,
then there are combinatorially many policies:

# policies = |A||S|

• Experience under policy ⇡

state s0
⇡(s0)

������! s1
⇡(s1)

������! s2 · · ·
reward r0 r1 r2 · · ·

Transitions occur with probabilities P(s0|s,⇡(s)).
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Test your understanding

A policy ⇡ completely determines the next state s0 that an
agent will end up in after taking an action from state s.

True (A) or False (B)?
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How to measure long-term return?

1. Finite-horizon return

return =
1
T (r0 + r1 + · · ·+ rT�1) for a T-step horizon

2. Undiscounted return with infinite horizon

return = lim
T!1

"
1
T

T�1X

t=0
rt

#

These are the most obvious ways to accumulate rewards.
But they are not the most commonly used in practice ...
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How to measure long-term return? (con’t)

3. Discounted return with infinite horizon

Let � 2 [0, 1) denote the so-called discount factor.
Then define

return = r0 + �r1 + �2r2 + �3r3 + · · · =
1X

t=0
�trt

What does it mean when the discount factor � << 1?

A. Immediate and future rewards are valued equally.

B. Future rewards are heavily discounted compared to
immediate.

C. Future rewards are lightly discounted compared to
immediate.

D. Only future rewards are considered.

16 / 269



How to measure long-term return? (con’t)

3. Discounted return with infinite horizon

Let � 2 [0, 1) denote the so-called discount factor.
Then define

return = r0 + �r1 + �2r2 + �3r3 + · · · =
1X

t=0
�trt

What does it mean when the discount factor � << 1?

A. Immediate and future rewards are valued equally.

B. Future rewards are heavily discounted compared to
immediate.

C. Future rewards are lightly discounted compared to
immediate.

D. Only future rewards are considered.

17 / 269



How to measure long-term return? (con’t)

3. Discounted return with infinite horizon

Let � 2 [0, 1) denote the so-called discount factor.

Then define

return = r0 + �r1 + �2r2 + �3r3 + · · · =
1X

t=0
�trt

What does it mean when the discount factor � << 1?

A. Immediate and future rewards are valued equally.

B. Future rewards are heavily discounted compared to
immediate.

C. Future rewards are lightly discounted compared to
immediate.

D. Only future rewards are considered.

18 / 269



How to measure long-term return? (con’t)

3. Discounted return with infinite horizon

Let � 2 [0, 1) denote the so-called discount factor.
Then define

return = r0 + �r1 + �2r2 + �3r3 + · · · =
1X

t=0
�trt

What does it mean when the discount factor � << 1?

A. Immediate and future rewards are valued equally.

B. Future rewards are heavily discounted compared to
immediate.

C. Future rewards are lightly discounted compared to
immediate.

D. Only future rewards are considered.

19 / 269



How to measure long-term return? (con’t)

3. Discounted return with infinite horizon

Let � 2 [0, 1) denote the so-called discount factor.
Then define

return = r0 + �r1 + �2r2 + �3r3 + · · · =
1X

t=0
�trt

What does it mean when the discount factor � << 1?

A. Immediate and future rewards are valued equally.

B. Future rewards are heavily discounted compared to
immediate.

C. Future rewards are lightly discounted compared to
immediate.

D. Only future rewards are considered.
20 / 269



How to measure long-term return? (con’t)

3. Discounted return with infinite horizon

Let � 2 [0, 1) denote the so-called discount factor.
Then define

return = r0 + �r1 + �2r2 + �3r3 + · · · =
1X

t=0
�trt

What does it mean when the discount factor � ⇠ 1?

A. Immediate and future rewards are valued equally.

B. Future rewards are heavily discounted compared to
immediate.

C. Future rewards are lightly discounted compared to
immediate.

D. Only future rewards are considered.
21 / 269



How to measure long-term return? (con’t)

3. Discounted return with infinite horizon Let � 2 [0, 1)

denote the so-called discount factor.
Then define

return = r0 + �r1 + �2r2 + �3r3 + · · · =
1X

t=0
�trt

When � ⌧ 1, future rewards are heavily discounted.
These returns can be optimized by short-sighted agents.

When � is close to 1, future rewards are lightly discounted.
These returns can only be optimized by far-sighted agents.
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Motivation for � 2 [0, 1)

Psychologist: Why discount rewards from the distant future?
Economist: Why favor investments with short-term payoffs?

1. Intuition

Many models are only approximations to the real world;
we should not attempt to extrapolate them indefinitely.

2. Mathematical convenience

Discounted returns lead to simple iterative algorithms
with strong guarantees of convergence.
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What to optimize?

The discounted return
P1

t=0 �
trt is a random variable.

But we can try to optimize its expected value:

E⇡

" 1X

t=0
�tR(st)

���� s0=s
# the expected value of the

discounted infinite-horizon return,
starting in state s at time t=0,
and following policy ⇡.

Maximizing the expected return is:
– generally wiser than maximizing the best-case return,
– but not as robust as minimizing the worst-case return.
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Value functions



State value function

V⇡(s) = E⇡

" 1X

t=0
�tR(st)

���� s0=s
# expected return,

starting in state s,
following policy ⇡

• Values versus rewards:

The reward R(s) give immediate feedback to the agent.
The value V⇡(s) computes the expected long-term return.

• Types of behaviors:

Sacrifice now for long-term gain: R(s) < 0, V⇡(s) > 0.
Win now at the expense of later: R(s) > 0, V⇡(s) < 0.
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Properties of the state value function

• Experience under policy ⇡

state s0
⇡(s0)

������! s1
⇡(s1)

������! s2 · · ·
reward r0 r1 r2 · · ·

• Adjacent states

States (s, s0) can be visited in succession if
P(s0|s,⇡(s)) > 0.

The values V⇡(s) and V⇡(s0) should be related, but how?

The Bellman equation tells us how.
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Bellman equation

V⇡(s) = E⇡


R(s0) + �R(s1) + �2R(s2) + · · ·

���� s0=s
�

= R(s) + � E⇡


R(s1) + �R(s2) + · · ·

���� s0=s
�

= R(s) + �
X

s0
P(s0|s,⇡(s))E⇡


R(s1) + �R(s2) + · · ·

���� s1=s
0
�

= R(s) + �
X

s0
P(s0|s,⇡(s)) V⇡(s0)

The Bellman equation is the basis for much that will follow:

V⇡(s) = R(s) + �
X

s0
P(s0|s,⇡(s)) V⇡(s0)
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Action value function

Q⇡(s,a) = E⇡

" 1X

t=0
�tR(st)

���� s0=s,a0=a
# expected return,

starting from state s,
taking action a,
then following policy ⇡

• Motivation

Useful to imagine how small changes affect expected outcomes.
What if (just once) the agent acted differently in state s?

• Analogous to the Bellman equation:

Q⇡(s,a) = R(s) + �
X

s0
P(s0|s,a) V⇡(s0)

V⇡(s) = R(s) + �
X

s0
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Optimality

• Goal

Find the optimal policy given the environment that the
agent is in.

• Planning

If reward function and transition probabilities are known.

• Reinforcement Learning
If reward function and transition probabilities are
unknown.
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Optimality

• Theorem

There exists at least one policy ⇡⇤ (and perhaps many) such
that V⇡⇤

(s) � V⇡(s) for all policies ⇡ and states s of the MDP.

• Notation

V⇤(s) = V⇡⇤
(s)

Q⇤(s,a) = Q⇡⇤
(s,a)

These optimal value functions are unique.
(All optimal policies share the same value functions.)
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Relations at optimality

• From the optimal action value function:

V⇤(s) = max
a

⇥
Q⇤(s,a)

⇤

⇡⇤(s) = argmax
a


Q⇤(s,a)

�

• From the optimal state value function:

Q⇤(s,a) = R(s) + �
X

s0
P(s0|s,a)V⇤(s0)

⇡⇤(s) = argmax
a

h
R(s) + �

X
s0
P(s0|s,a)V⇤(s0)

i

• Why are these relations useful?

Sometimes it can be easier to estimate Q⇤(s,a) or V⇤(s)
(which are continuous) than to learn ⇡⇤(s) (which is discrete).

92 / 269



Relations at optimality

• From the optimal action value function:

V⇤(s) = max
a

⇥
Q⇤(s,a)

⇤

⇡⇤(s) = argmax
a


Q⇤(s,a)

�

• From the optimal state value function:

Q⇤(s,a) = R(s) + �
X

s0
P(s0|s,a)V⇤(s0)

⇡⇤(s) = argmax
a

h
R(s) + �

X
s0
P(s0|s,a)V⇤(s0)

i

• Why are these relations useful?

Sometimes it can be easier to estimate Q⇤(s,a) or V⇤(s)
(which are continuous) than to learn ⇡⇤(s) (which is discrete).

93 / 269



Relations at optimality

• From the optimal action value function:

V⇤(s) =

max
a

⇥
Q⇤(s,a)

⇤

⇡⇤(s) = argmax
a


Q⇤(s,a)

�

• From the optimal state value function:

Q⇤(s,a) = R(s) + �
X

s0
P(s0|s,a)V⇤(s0)

⇡⇤(s) = argmax
a

h
R(s) + �

X
s0
P(s0|s,a)V⇤(s0)

i

• Why are these relations useful?

Sometimes it can be easier to estimate Q⇤(s,a) or V⇤(s)
(which are continuous) than to learn ⇡⇤(s) (which is discrete).

94 / 269



Relations at optimality

• From the optimal action value function:

V⇤(s) = max
a

⇥
Q⇤(s,a)

⇤

⇡⇤(s) = argmax
a


Q⇤(s,a)

�

• From the optimal state value function:

Q⇤(s,a) = R(s) + �
X

s0
P(s0|s,a)V⇤(s0)

⇡⇤(s) = argmax
a

h
R(s) + �

X
s0
P(s0|s,a)V⇤(s0)

i

• Why are these relations useful?

Sometimes it can be easier to estimate Q⇤(s,a) or V⇤(s)
(which are continuous) than to learn ⇡⇤(s) (which is discrete).

95 / 269



Relations at optimality

• From the optimal action value function:

V⇤(s) = max
a

⇥
Q⇤(s,a)

⇤

⇡⇤(s) =

argmax
a


Q⇤(s,a)

�

• From the optimal state value function:

Q⇤(s,a) = R(s) + �
X

s0
P(s0|s,a)V⇤(s0)

⇡⇤(s) = argmax
a

h
R(s) + �

X
s0
P(s0|s,a)V⇤(s0)

i

• Why are these relations useful?

Sometimes it can be easier to estimate Q⇤(s,a) or V⇤(s)
(which are continuous) than to learn ⇡⇤(s) (which is discrete).

96 / 269



Relations at optimality

• From the optimal action value function:

V⇤(s) = max
a

⇥
Q⇤(s,a)

⇤

⇡⇤(s) = argmax
a


Q⇤(s,a)

�

• From the optimal state value function:

Q⇤(s,a) = R(s) + �
X

s0
P(s0|s,a)V⇤(s0)

⇡⇤(s) = argmax
a

h
R(s) + �

X
s0
P(s0|s,a)V⇤(s0)

i

• Why are these relations useful?

Sometimes it can be easier to estimate Q⇤(s,a) or V⇤(s)
(which are continuous) than to learn ⇡⇤(s) (which is discrete).

97 / 269

- volve
-

& -

Single action
-
-W



Relations at optimality

• From the optimal action value function:

V⇤(s) = max
a

⇥
Q⇤(s,a)

⇤

⇡⇤(s) = argmax
a


Q⇤(s,a)

�

• From the optimal state value function:

Q⇤(s,a) = R(s) + �
X

s0
P(s0|s,a)V⇤(s0)

⇡⇤(s) = argmax
a

h
R(s) + �

X
s0
P(s0|s,a)V⇤(s0)

i

• Why are these relations useful?

Sometimes it can be easier to estimate Q⇤(s,a) or V⇤(s)
(which are continuous) than to learn ⇡⇤(s) (which is discrete).

98 / 269



Relations at optimality

• From the optimal action value function:

V⇤(s) = max
a

⇥
Q⇤(s,a)

⇤

⇡⇤(s) = argmax
a


Q⇤(s,a)

�

• From the optimal state value function:

Q⇤(s,a) =

R(s) + �
X

s0
P(s0|s,a)V⇤(s0)

⇡⇤(s) = argmax
a

h
R(s) + �

X
s0
P(s0|s,a)V⇤(s0)

i

• Why are these relations useful?

Sometimes it can be easier to estimate Q⇤(s,a) or V⇤(s)
(which are continuous) than to learn ⇡⇤(s) (which is discrete).

99 / 269



Relations at optimality

• From the optimal action value function:

V⇤(s) = max
a

⇥
Q⇤(s,a)

⇤

⇡⇤(s) = argmax
a


Q⇤(s,a)

�

• From the optimal state value function:

Q⇤(s,a) = R(s) + �
X

s0
P(s0|s,a)V⇤(s0)

⇡⇤(s) = argmax
a

h
R(s) + �

X
s0
P(s0|s,a)V⇤(s0)

i

• Why are these relations useful?

Sometimes it can be easier to estimate Q⇤(s,a) or V⇤(s)
(which are continuous) than to learn ⇡⇤(s) (which is discrete).
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Planning in MDPs

Given a complete model of the agent and its environment
as a Markov decision process, namely

MDP = {S,A,P(s0|s,a),R(s), �},

how can we efficiently compute (i.e., in time polynomial in the
number of states) any of the following:

1. an optimal policy ⇡⇤(s)?
2. the optimal state value function V⇤(s)?
3. the optimal action value function Q⇤(s,a)?

This is the problem of planning in MDPs.
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Policy Based



Algorithms

1. Policy evaluation

How to compute V⇡(s) for some fixed policy ⇡?

2. Policy improvement

How to compute a policy ⇡0 such that V⇡0
(s) � V⇡(s)?

3. Policy iteration

How to compute an optimal policy ⇡⇤(s)?
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Policy evaluation

• How to compute the state value function?

V⇡(s) = E⇡

" 1X

t=0
�tR(st)

���� s0=s
#

• Bellman equation:

V⇡(s) = R(s) + �
X

s0
P(s0|s,⇡(s))V⇡(s0)

• Solve linear system: There are n equations for n
unknowns (where s = 1, 2, . . . ,n).
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Solving the linear system

• From the Bellman equation:
V⇡(s) = R(s) + �

X

s0
P(s0|s,⇡(s)) V⇡(s0).

• Rearranging terms:
R(s) = V⇡(s) � �

X

s0
P(s0|s,⇡(s))V⇡(s0)

=
X

s0


I(s, s0)| {z }

identity matrix

� �P(s0|s,⇡(s))
�
V⇡(s0)

• In matrix-vector form:

R =


I� �P⇡

�
V⇡

"
column vector of
n known rewards

#
=

"
n⇥ n matrix
(known)

# "
column vector of
n unknown values

#

130 / 269



Solving the linear system

• From the Bellman equation:

V⇡(s) = R(s) + �
X

s0
P(s0|s,⇡(s)) V⇡(s0).

• Rearranging terms:
R(s) = V⇡(s) � �

X

s0
P(s0|s,⇡(s))V⇡(s0)

=
X

s0


I(s, s0)| {z }

identity matrix

� �P(s0|s,⇡(s))
�
V⇡(s0)

• In matrix-vector form:

R =


I� �P⇡

�
V⇡

"
column vector of
n known rewards

#
=

"
n⇥ n matrix
(known)

# "
column vector of
n unknown values

#

131 / 269



Solving the linear system

• From the Bellman equation:
V⇡(s) = R(s) + �

X

s0
P(s0|s,⇡(s)) V⇡(s0).

• Rearranging terms:
R(s) = V⇡(s) � �

X

s0
P(s0|s,⇡(s))V⇡(s0)

=
X

s0


I(s, s0)| {z }

identity matrix

� �P(s0|s,⇡(s))
�
V⇡(s0)

• In matrix-vector form:

R =


I� �P⇡

�
V⇡

"
column vector of
n known rewards

#
=

"
n⇥ n matrix
(known)

# "
column vector of
n unknown values

#

132 / 269



Solving the linear system

• From the Bellman equation:
V⇡(s) = R(s) + �

X

s0
P(s0|s,⇡(s)) V⇡(s0).

• Rearranging terms:

R(s) = V⇡(s) � �
X

s0
P(s0|s,⇡(s))V⇡(s0)

=
X

s0


I(s, s0)| {z }

identity matrix

� �P(s0|s,⇡(s))
�
V⇡(s0)

• In matrix-vector form:

R =


I� �P⇡

�
V⇡

"
column vector of
n known rewards

#
=

"
n⇥ n matrix
(known)

# "
column vector of
n unknown values

#

133 / 269



Solving the linear system

• From the Bellman equation:
V⇡(s) = R(s) + �

X

s0
P(s0|s,⇡(s)) V⇡(s0).

• Rearranging terms:
R(s) = V⇡(s) � �

X

s0
P(s0|s,⇡(s))V⇡(s0)

=
X

s0


I(s, s0)| {z }

identity matrix

� �P(s0|s,⇡(s))
�
V⇡(s0)

• In matrix-vector form:

R =


I� �P⇡

�
V⇡

"
column vector of
n known rewards

#
=

"
n⇥ n matrix
(known)

# "
column vector of
n unknown values

#

134 / 269

&



Solving the linear system

• From the Bellman equation:
V⇡(s) = R(s) + �

X

s0
P(s0|s,⇡(s)) V⇡(s0).

• Rearranging terms:
R(s) = V⇡(s) � �

X

s0
P(s0|s,⇡(s))V⇡(s0)

=
X

s0



I(s, s0)| {z }
identity matrix

� �P(s0|s,⇡(s))
�
V⇡(s0)

• In matrix-vector form:

R =


I� �P⇡

�
V⇡

"
column vector of
n known rewards

#
=

"
n⇥ n matrix
(known)

# "
column vector of
n unknown values

#

135 / 269



Solving the linear system

• From the Bellman equation:
V⇡(s) = R(s) + �

X

s0
P(s0|s,⇡(s)) V⇡(s0).

• Rearranging terms:
R(s) = V⇡(s) � �

X

s0
P(s0|s,⇡(s))V⇡(s0)

=
X

s0


I(s, s0)

| {z }
identity matrix

� �P(s0|s,⇡(s))
�
V⇡(s0)

• In matrix-vector form:

R =


I� �P⇡

�
V⇡

"
column vector of
n known rewards

#
=

"
n⇥ n matrix
(known)

# "
column vector of
n unknown values

#

136 / 269



Solving the linear system

• From the Bellman equation:
V⇡(s) = R(s) + �

X

s0
P(s0|s,⇡(s)) V⇡(s0).

• Rearranging terms:
R(s) = V⇡(s) � �

X

s0
P(s0|s,⇡(s))V⇡(s0)

=
X

s0


I(s, s0)| {z }

identity matrix

� �P(s0|s,⇡(s))
�
V⇡(s0)

• In matrix-vector form:

R =


I� �P⇡

�
V⇡

"
column vector of
n known rewards

#
=

"
n⇥ n matrix
(known)

# "
column vector of
n unknown values

#

137 / 269



Solving the linear system

• From the Bellman equation:
V⇡(s) = R(s) + �

X

s0
P(s0|s,⇡(s)) V⇡(s0).

• Rearranging terms:
R(s) = V⇡(s) � �

X

s0
P(s0|s,⇡(s))V⇡(s0)

=
X

s0


I(s, s0)| {z }

identity matrix

� �P(s0|s,⇡(s))
�

V⇡(s0)

• In matrix-vector form:

R =


I� �P⇡

�
V⇡

"
column vector of
n known rewards

#
=

"
n⇥ n matrix
(known)

# "
column vector of
n unknown values

#

138 / 269



Solving the linear system

• From the Bellman equation:
V⇡(s) = R(s) + �

X

s0
P(s0|s,⇡(s)) V⇡(s0).

• Rearranging terms:
R(s) = V⇡(s) � �

X

s0
P(s0|s,⇡(s))V⇡(s0)

=
X

s0


I(s, s0)| {z }

identity matrix

� �P(s0|s,⇡(s))
�
V⇡(s0)

• In matrix-vector form:

R =


I� �P⇡

�
V⇡

"
column vector of
n known rewards

#
=

"
n⇥ n matrix
(known)

# "
column vector of
n unknown values

#

139 / 269



Solving the linear system

• From the Bellman equation:
V⇡(s) = R(s) + �

X

s0
P(s0|s,⇡(s)) V⇡(s0).

• Rearranging terms:
R(s) = V⇡(s) � �

X

s0
P(s0|s,⇡(s))V⇡(s0)

=
X

s0


I(s, s0)| {z }

identity matrix

� �P(s0|s,⇡(s))
�
V⇡(s0)

• In matrix-vector form:

R =


I� �P⇡

�
V⇡

"
column vector of
n known rewards

#
=

"
n⇥ n matrix
(known)

# "
column vector of
n unknown values

#

140 / 269



Solving the linear system

• From the Bellman equation:
V⇡(s) = R(s) + �

X

s0
P(s0|s,⇡(s)) V⇡(s0).

• Rearranging terms:
R(s) = V⇡(s) � �

X

s0
P(s0|s,⇡(s))V⇡(s0)

=
X

s0


I(s, s0)| {z }

identity matrix

� �P(s0|s,⇡(s))
�
V⇡(s0)

• In matrix-vector form:

R =


I� �P⇡

�
V⇡

"
column vector of
n known rewards

#
=

"
n⇥ n matrix
(known)

# "
column vector of
n unknown values

#

141 / 269



Solving the linear system

• From the Bellman equation:
V⇡(s) = R(s) + �

X

s0
P(s0|s,⇡(s)) V⇡(s0).

• Rearranging terms:
R(s) = V⇡(s) � �

X

s0
P(s0|s,⇡(s))V⇡(s0)

=
X

s0


I(s, s0)| {z }

identity matrix

� �P(s0|s,⇡(s))
�
V⇡(s0)

• In matrix-vector form:

R =


I� �P⇡

�
V⇡

"
column vector of
n known rewards

#
=

"
n⇥ n matrix
(known)

# "
column vector of
n unknown values

#

142 / 269

-

-

-

-



Solving the linear system (con’t)

• Solution
R =


I� �P⇡

�
V⇡ =) V⇡ = (I� �P⇡)�1| {z }

matrix inverse

R

• Complexity

It takes O(n3) operations to solve this system of equations.

• Example

Let S = {1, 2} and P(s0|s,⇡(s)) = 0.5 for all (s, s0).
"
V⇡(1)
V⇡(2)

#
=

 "
1 0
0 1

#
� �

"
0.5 0.5
0.5 0.5

#!�1 "
R(1)
R(2)

#
.
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Policy improvement

• Problem statement

Given a policy ⇡ and its state value function V⇡(s),
how to compute a policy ⇡0 such that

V⇡0
(s) � V⇡(s) for all states s?

• Definition

Given the action value function Q⇡(s,a) for policy ⇡, we
define the greedy policy ⇡0 by

⇡0(s) = argmax
a


Q⇡(s,a)

�
.

Why greedy? Because we change the action in state s to
whatever appears to improve the expected return.
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Greedy policies

• In terms of the state value function:

⇡0(s) = argmax
a


Q⇡(s,a)

�

= argmax
a

h
R(s) + �

X
s0
P(s0|s,a) V⇡(s0)

i

= argmax
a

hX
s0
P(s0|s,a) V⇡(s0)

i

• Test your understanding:
⇡0(s) = ⇡(s) for some s 2 S? not necessarily

⇡0(s) 6= ⇡(s) for some s 2 S? not necessarily

Q⇡(s,⇡0(s)) � Q⇡(s,⇡(s)) for all s 2 S? TRUE
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Policy improvement

• Greedy policy:
⇡0(s) = argmax

a
Q⇡(s,a)

• Theorem:
The greedy policy ⇡0(s) = argmaxa Q⇡(s,a) improves
everywhere on the policy ⇡ from which it was derived:

V⇡0
(s) � V⇡(s) for all states s 2 S

• Intuition:
If it’s better to choose action a in state s before following
⇡, then it’s always better to make this choice.

• Proof idea:
We’ll prove a key inequality for one-step deviations from ⇡,
then we’ll extend this inequality by an iterative argument.
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Proof — 1. Deriving the inequality

• Comparing value functions:

V⇡(s) = Q⇡(s,⇡(s))
 max

a
Q⇡(s,a)

= Q⇡(s,⇡0(s))
= R(s) + �

X

s0
P(s0|s,⇡0(s))V⇡(s0)

• Combining these steps:

V⇡(s)  R(s) + �
X

s0
P(s0|s,⇡0(s))V⇡(s0)

• Intuition:

It is better to take one step under ⇡0, then revert to ⇡,
than to always follow ⇡.

185 / 269



Proof — 1. Deriving the inequality

• Comparing value functions:

V⇡(s) = Q⇡(s,⇡(s))
 max

a
Q⇡(s,a)

= Q⇡(s,⇡0(s))
= R(s) + �

X

s0
P(s0|s,⇡0(s))V⇡(s0)

• Combining these steps:

V⇡(s)  R(s) + �
X

s0
P(s0|s,⇡0(s))V⇡(s0)

• Intuition:

It is better to take one step under ⇡0, then revert to ⇡,
than to always follow ⇡.

186 / 269



Proof — 1. Deriving the inequality

• Comparing value functions:

V⇡(s) = Q⇡(s,⇡(s))

 max
a
Q⇡(s,a)

= Q⇡(s,⇡0(s))
= R(s) + �

X

s0
P(s0|s,⇡0(s))V⇡(s0)

• Combining these steps:

V⇡(s)  R(s) + �
X

s0
P(s0|s,⇡0(s))V⇡(s0)

• Intuition:

It is better to take one step under ⇡0, then revert to ⇡,
than to always follow ⇡.

187 / 269



Proof — 1. Deriving the inequality

• Comparing value functions:

V⇡(s) = Q⇡(s,⇡(s))
 max

a
Q⇡(s,a)

= Q⇡(s,⇡0(s))
= R(s) + �

X

s0
P(s0|s,⇡0(s))V⇡(s0)

• Combining these steps:

V⇡(s)  R(s) + �
X

s0
P(s0|s,⇡0(s))V⇡(s0)

• Intuition:

It is better to take one step under ⇡0, then revert to ⇡,
than to always follow ⇡.

188 / 269



Proof — 1. Deriving the inequality

• Comparing value functions:

V⇡(s) = Q⇡(s,⇡(s))
 max

a
Q⇡(s,a)

= Q⇡(s,⇡0(s))

= R(s) + �
X

s0
P(s0|s,⇡0(s))V⇡(s0)

• Combining these steps:

V⇡(s)  R(s) + �
X

s0
P(s0|s,⇡0(s))V⇡(s0)

• Intuition:

It is better to take one step under ⇡0, then revert to ⇡,
than to always follow ⇡.

189 / 269



Proof — 1. Deriving the inequality

• Comparing value functions:

V⇡(s) = Q⇡(s,⇡(s))
 max

a
Q⇡(s,a)

= Q⇡(s,⇡0(s))
= R(s) + �

X

s0
P(s0|s,⇡0(s))V⇡(s0)

• Combining these steps:

V⇡(s)  R(s) + �
X

s0
P(s0|s,⇡0(s))V⇡(s0)

• Intuition:

It is better to take one step under ⇡0, then revert to ⇡,
than to always follow ⇡.

190 / 269



Proof — 1. Deriving the inequality

• Comparing value functions:

V⇡(s) = Q⇡(s,⇡(s))
 max

a
Q⇡(s,a)

= Q⇡(s,⇡0(s))
= R(s) + �

X

s0
P(s0|s,⇡0(s))V⇡(s0)

• Combining these steps:

V⇡(s)  R(s) + �
X

s0
P(s0|s,⇡0(s))V⇡(s0)

• Intuition:

It is better to take one step under ⇡0, then revert to ⇡,
than to always follow ⇡.

191 / 269



Proof — 1. Deriving the inequality

• Comparing value functions:

V⇡(s) = Q⇡(s,⇡(s))
 max

a
Q⇡(s,a)

= Q⇡(s,⇡0(s))
= R(s) + �

X

s0
P(s0|s,⇡0(s))V⇡(s0)

• Combining these steps:

V⇡(s)  R(s) + �
X

s0
P(s0|s,⇡0(s))V⇡(s0)

• Intuition:

It is better to take one step under ⇡0, then revert to ⇡,
than to always follow ⇡.

192 / 269



Proof — 1. Deriving the inequality

• Comparing value functions:

V⇡(s) = Q⇡(s,⇡(s))
 max

a
Q⇡(s,a)

= Q⇡(s,⇡0(s))
= R(s) + �

X

s0
P(s0|s,⇡0(s))V⇡(s0)

• Combining these steps:

V⇡(s)  R(s) + �
X

s0
P(s0|s,⇡0(s))V⇡(s0)

• Intuition:

It is better to take one step under ⇡0, then revert to ⇡,
than to always follow ⇡.

193 / 269



Proof — 1. Deriving the inequality

• Comparing value functions:

V⇡(s) = Q⇡(s,⇡(s))
 max

a
Q⇡(s,a)

= Q⇡(s,⇡0(s))
= R(s) + �

X

s0
P(s0|s,⇡0(s))V⇡(s0)

• Combining these steps:

V⇡(s)  R(s) + �
X

s0
P(s0|s,⇡0(s))V⇡(s0)

• Intuition:

It is better to take one step under ⇡0, then revert to ⇡,
than to always follow ⇡.

194 / 269



Proof — 2. Leveraging the inequality

• One-step inequality:

V⇡(s)  R(s) + �
X

s0
P(s0|s,⇡0(s))V⇡(s0)

What happens if we plug this inequality into itself?
Then we obtain ...

• Two-step inequality:
V⇡(s)  R(s)+ �

X

s0
P(s0|s,⇡0(s))

"
R(s0) + �

X

s00
P(s00|s0,⇡0(s0))V⇡(s00)

#

• Intuition:

It is better to take two steps under ⇡0, then revert to ⇡,
than to always follow ⇡.
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Proof — 3. Taking the limit

• Two-step inequality:
V⇡(s)  R(s)+ �

X

s0
P(s0|s,⇡0(s))

"
R(s0) + �

X

s00
P(s00|s0,⇡0(s0))V⇡(s00)

#

• Apply the inequality t times:

It is better to take t steps under ⇡0, then revert to ⇡,
than to always follow ⇡. Last term is of order O(�t).

• Take the limit t ! 1:

It is better to follow ⇡0 (always) than to follow ⇡ (always).
Conclude that V⇡(s)  V⇡0

(s) for all states s 2 S .
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Policy iteration

How to compute ⇡⇤?

1. Choose an initial policy ⇡ : S ! A.

2. Repeat until convergence:

Compute the action value function Q⇡(s,a).
Compute the greedy policy ⇡0(s) = argmaxa Q⇡(s,a).
Replace ⇡ by ⇡0.

⇡0
evaluate
����! V⇡0 (s)

Q⇡0 (s, a)
improve
����! ⇡1

evaluate
����! V⇡1 (s)

Q⇡1 (s, a)
improve
����! · · ·

Policy iteration is guaranteed to terminate.

True (A) or False (B)?
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Policy iteration

• How to compute ⇡⇤?

⇡0
evaluate

������! V⇡0(s)
Q⇡0(s,a)

improve
������! ⇡1

evaluate
������! · · ·

This process is guaranteed to terminate.
But does it converge to an optimal policy?

• Theorem

If ⇡0(s) = argmaxa Q⇡(s,a) and V⇡0
(s) = V⇡(s) for all s 2 S ,

then V⇡(s) = V⇤(s) for all s 2 S .

• Proof idea

Prove a key equality/inequality for terminal/non-terminal
policies; iterate t times, then compare the limits as t ! 1.
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Proof — 1. Bellman optimality equation

• Suppose policy iteration converges to ⇡0.

V⇡0
(s) = R(s) + �

X

s0
P(s0|s,⇡0(s))V⇡0

(s0) Bellman equation

V⇡(s) = R(s) + �
X

s0
P(s0|s,⇡0(s))V⇡(s0) at convergence

Now exploit that ⇡0 is greedy with respect to ⇡ ...

• Bellman optimality equation

V⇡(s) = R(s) + �max
a

X

s0
P(s0|s,a)V⇡(s0)

These equations are nonlinear due to the max operation.
There are n equations for n unknowns (where s = 1, 2, . . . ,n).
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Proof — 2. Inequality

• Let ⇡̃ be any policy of the MDP:

V⇡̃(s) = R(s) + �
X

s0
P(s0|s, ⇡̃(s))V⇡̃(s0) Bellman equation

V⇡̃(s)  R(s) + �max
a

X

s0
P(s0|s, a)V⇡̃(s0) greedy

• Compare to Bellman optimality equation (BOE):

V⇡(s) = R(s) + � max
a

X

s0
P(s0|s, a))V⇡(s0)

• Understanding the difference:

The inequality holds for any policy ⇡̃ of the MDP.
The BOE only holds for a solution ⇡ from policy iteration.
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The inequality holds for any policy ⇡̃ of the MDP.
The BOE only holds for a solution ⇡ from policy iteration.
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Proof — 3. Taking the limit

• Iterating the inequality:
V⇡̃(s)  R(s) + �max

a

X
s0
P(s0|s, a)V⇡̃(s0)

 R(s) + �max
a

X
s0
P(s0|s, a)


R(s0) + �max

a0

X
s00
P(s00|s0, a0)V⇡̃(s00)

�

• Iterating the BOE:
V⇡(s) = R(s) + �max

a

X
s0
P(s0|s, a)V⇡(s0)

= R(s) + �max
a

X
s0
P(s0|s, a)


R(s0) + �max

a0

X
s00
P(s00|s0, a0)V⇡(s00)

�

• Iterating t times:

Both right sides agree up to term of order �t.
Taking the limit t ! 1, we find V⇡̃(s)  V⇡(s) for all s 2 S .

Since ⇡̃ is arbitrary, we conclude that ⇡ is optimal .
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That’s all folks!
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