CSE 150A-250A Al: Probabilistic Models

Lecture 15

Fall 2025

Trevor Bonjour

Department of Computer Science and Engineering
University of California, San Diego

Slides adapted from previous versions of the course (Prof. Lawrence, Prof. Alvarado, Prof Berg-Kirkpatrick)

1/269

Review
Value functions

Planning in MDPs
Policy Based
Policy Evaluation

Policy Improvement

Policy Iteration

2/269

Review

Reinforcement learning (RL)

- Learning from experience in the world

—» agent

state s,

action a,
reward r,

environment «—

- Formalization as Markov decision process

S state space %m\@.

A action space M
> P(s/ys,g transition probabilities
R(s) reward function
—
MDP {8, A,P(S']s,a),R(s)}

—
- 4 /269

Decision-making in MDPs

- Definition e
—
A policy 7 : S — A is a mapping of states to actions.
In this class we will only consider deterministic policies.

5/269

Decision-making in MDPs

- Definition

A policy 7 : S — A is a mapping of states to actions.

In this class we will only consider deterministic policies.
- Number of policies

If there are | A| possible actions in each of |S| states,
then there are combinatorially many policies:

policies = |A|lS!

6 /269

Decision-making in MDPs

- Definition

A policy 7 : S — A is a mapping of states to actions.
In this class we will only consider deterministic policies.

- Number of policies

If there are | A| possible actions in each of |S| states,
then there are combinatorially many policies:

policies = |A|lS!

- Experience under policy =

m(So) 7($1)
state s —— 59 —— S5,

reward rg I ry

Transitions occur with probabilities P(s'|s, 7(s)).

7269

Test your understanding

dateemimic ¢

A policyfvlr completely determines the next state s’ that an
agent will end up in after taking an action from state s.

True (A) or

8 /269

How to measure long-term return?

9/269

How to measure long-term return?

1. Finite-horizon return

10 /269

How to measure long-term return?

1. Finite-horizon return

1 .
return = ?(ro +r+---+rr—q) foraT-step horizon

11/269

How to measure long-term return?

1. Finite-horizon return

1 .
return = ?(ro +r+---+rr—q) foraT-step horizon

2. Undiscounted return with infinite horizon

12/ 269

How to measure long-term return?

1. Finite-horizon return

1 .
return = ?(ro +r+---+rr—q) foraT-step horizon

2. Undiscounted return with infinite horizon

1 T—1
return = i - r
Tl~>moo [T Z t]

13/269

How to measure long-term return?

1. Finite-horizon return

1 .
return = ?(ro +r+---+rr—q) foraT-step horizon
2. Undiscounted return with infinite horizon
1 T—1
return = i = r
tin 151
These are the most obvious ways to accumulate rewards.

14 /269

How to measure long-term return?

1. Finite-horizon return

1 .
return = ?(ro +r+---+rr—q) foraT-step horizon

2. Undiscounted return with infinite horizon

1 T—1
return = i - r
Tl~>moo [T Z t]

These are the most obvious ways to accumulate rewards.
But they are not the most commonly used in practice ...

15/269

How to measure long-term return? (con't)

16 /269

How to measure long-term return? (con't)

3. Discounted return with infinite horizon

17/ 269

How to measure long-term return? (con't)

3. Discounted return with infinite horizon

Let v € [0,1) denote the so-called discount factor.

18 /269

How to measure long-term return? (con't)

3. Discounted return with infinite horizon

Let v € [0,1) denote the so-called discount factor.
Then define

(o]
return = ro+yn+ R+ R+ = Y '
t=0

19 /269

How to measure long-term return? (con't)

3. Discounted return with infinite horizon

Let v € [0,1) denote the so-called discount factor.
Then define

[ee]
return = ro+yn+n+Y s+ = > '
t=0

What does it mean when the discount factor y << 1?
A. Immediate and future rewards are valued equally.

B. Future rewards are heavily discounted compared to
immediate.

C. Future rewards are lightly discounted compared to
immediate.

D. Only future rewards are considered.
- 20 /269

How to measure long-term return? (con't)

3. Discounted return with infinite horizon

Let v € [0,1) denote the so-called discount factor.
Then define

[ee]
return = ro+yn+n+Y s+ = > '
t=0

What does it mean when the discount factor v ~ 1?
A. Immediate and future rewards are valued equally.

B. Future rewards are heavily discounted compared to
immediate.

C. Future rewards are lightly discounted compared to
immediate.

D. Only future rewards are considered.

/ 269

How to measure long-term return? (con't)

3. Discounted return with infinite horizon Let v € [0, 1)

denote the so-called discount factor.
Then define

[o.e]
return = ro+yn+ YR+ 4 = Y A
t=0

When ~ < 1, future rewards are heavily discounted.
These returns can be optimized by short-sighted agents.

When ~ is close to 1, future rewards are lightly discounted.
These returns can only be optimized by far-sighted agents.

22 /269

Motivation for v € [0, 1)

23 /269

Motivation for v € [0, 1)

Psychologist: Why discount rewards from the distant future?

24 [269

Motivation for v € [0, 1)

Psychologist: Why discount rewards from the distant future?
Economist: Why favor investments with short-term payoffs?

25/269

Motivation for v € [0, 1)

Psychologist: Why discount rewards from the distant future?
Economist: Why favor investments with short-term payoffs?

1. Intuition

26 /269

Motivation for v € [0, 1)

Psychologist: Why discount rewards from the distant future?
Economist: Why favor investments with short-term payoffs?

1. Intuition

Many models are only approximations to the real world;

27 [269

Motivation for v € [0, 1)

Psychologist: Why discount rewards from the distant future?
Economist: Why favor investments with short-term payoffs?

1. Intuition

Many models are only approximations to the real world;
we should not attempt to extrapolate them indefinitely.

28 /269

Motivation for v € [0, 1)

Psychologist: Why discount rewards from the distant future?
Economist: Why favor investments with short-term payoffs?

1. Intuition

Many models are only approximations to the real world;
we should not attempt to extrapolate them indefinitely.

2. Mathematical convenience

29 /269

Motivation for v € [0, 1)

Psychologist: Why discount rewards from the distant future?
Economist: Why favor investments with short-term payoffs?

1. Intuition

Many models are only approximations to the real world;
we should not attempt to extrapolate them indefinitely.

2. Mathematical convenience

Discounted returns lead to simple iterative algorithms
with strong guarantees of convergence.

30 /269

What to optimize?

31/269

What to optimize?

The discounted return Y%, +'r; is a random variable.

32/269

What to optimize?

The discounted return Y%, +'r; is a random variable.
But we can try to optimize its expected value:

33/269

What to optimize?

The discounted return Y%, +'r; is a random variable.
But we can try to optimize its expected value:

the expected value of the
] discount@ infinite-horizon return,

34 /269

What to optimize?

The discounted return Y%, +'r; is a random variable.
But we can try to optimize its expected value:

the expected value of the
discounted infinite-horizon return,
starting in state s at time t=0,

35/ 269

What to optimize?

The discounted return Y%, +'r; is a random variable.
But we can try to optimize its expected value:

the expected value of the
P discounted infinite-horizon return,
0~ starting in state s at time t=0,

and following policy .
—_—

E?[i” IR(St)

t=0

36 /269

What to optimize?

The discounted return Y%, +'r; is a random variable.
But we can try to optimize its expected value:

the expected value of the

so:s] discgunt@ inﬁnite—ho.r/zon return,
starting in state s at time t=0,
and following policy .

Eﬂ[i” IR(St)

t=0

Maximizing the expected return is:

37 /269

What to optimize?

The discounted return Y%, +'r; is a random variable.
But we can try to optimize its expected value:

the expected value of the

so:s] d/scgtlfvt?d inﬁnite—ho.r/zon return,
starting in state s at time t=0,
and following policy .

EW[iJR(st)

t=0

Maximizing the expected return is:

- generally wiser than maximizing the best-case return,

38 /269

What to optimize?

The discounted return Y%, +'r; is a random variable.
But we can try to optimize its expected value:

the expected value of the

so:s] d/scgtlfvt?d inﬁnite—ho.r/zon return,
starting in state s at time t=0,
and following policy .

EW[iJR(st)

t=0

Maximizing the expected return is:

- generally wiser than maximizing the best-case return,
- but not as robust as minimizing the worst-case return.

39/269

Value functions

State value function

411269

State value function
So :S]

> A'R(se)

t=0

Vi(s) = ET

42 /269

State value function

] expected return,

> A'R(se)

t=0

VE(s) = EF So=S

-

starting in state s,
following policy 7

43 /269

State value function

expected return,
Vi(s) = ET so:s] starting in state s,

following policy 7

> A'R(se)

t=0

- Values versus rewards:

44 [269

State value function

expected return,
So :S]

> A'R(se)

t=0

Vi(s) = ET starting in state s,

following policy 7

- Values versus rewards:

The reward R(s) give immediate feedback to the agent.

45 /269

State value function

expected return,
Vi(s) = ET so:s] starting in state s,

following policy 7

> A'R(se)

t=0

- Values versus rewards:

The reward R(s) give immediate feedback to the agent.
The value V™(s) computes the expected long-term return.

46 /269

State value function

expected return,
Vi(s) = ET so:s] starting in state s,

following policy 7

> A'R(se)

t=0

- Values versus rewards:

The reward R(s) give immediate feedback to the agent.
The value V™(s) computes the expected long-term return.

- Types of behaviors:

47 [269

State value function

expected return,
Vi(s) = ET so:s] starting in state s,

following policy 7

> A'R(se)

t=0

- Values versus rewards:

The reward R(s) give immediate feedback to the agent.
The value V™(s) computes the expected long-term return.

- Types of behaviors:

Sacrifice now for long-term gain: R(s) < 0, V™(s) > 0.

48 /269

State value function

expected return,
Vi(s) = ET so:s]

l

- Values versus rewards:

starting in state s,
\following policy

> A'R(se)

t=0

The reward R(s) give immediate feedback to the agent.
The value V™(s) computes the expected long-term return.

- Types of behaviors:

Sacrifice now for long-term gain: R(s) < 0, V™(s) > 0.
Win now at the expense of later: R(s) > 0, V™(s) < 0.

49 /269

Properties of the state value function

50 /269

Properties of the state value function

- Experience under policy =

51/269

Properties of the state value function

- Experience under policy =

7(So) m(s1)
state s ——— S — % 5

52 /269

Properties of the state value function

- Experience under policy =

7(So) m(s1)
state s ——— S — % 5

reward rg r Iy

53 /269

Properties of the state value function

- Experience under policy =

7(So) m(s1)
state s ——— S — % 5

reward rg r Iy

- Adjacent states

54 /269

Properties of the state value function

- Experience under policy =

7(So) m(s1)
state s ——— S — % 5

reward rg r Iy

- Adjacent states

States (s, ') can be visited in succession if

P(s'|s,m(s)) >0

55 /269

Properties of the state value function

- Experience under policy =

7(So) m(s1)
state s ——— S — % 5

reward rg r Iy

- Adjacent states

States (s, ') can be visited in succession if
P(s'|s, m(s)) > O.

The values V7(s) and V™ (s’) should be related, but how?

56 /269

Properties of the state value function

- Experience under policy =

7(So) m(s1)
state s ——— S — % 5

reward rg I Iy
- Adjacent (s)’[cates /:7

v L o
States (s, s’) can be visited in succession if
Pgs’ siwgs)) > 0. —_—

—

The values V7(s) and V™ (s’) should be related, but how?

’The Bellman equation tells us how.

57 /269

Bellman equation

58 /269

Bellman equation

VT(s) =

59 /269

Bellman equation
SOZS]

—

VTF(S) = E7 |:R(So)+ﬁR(Sq)+"R(Sz)‘f'"'

60 /269

Bellman equation

VT(s) = EW[R(SO)'F;R(SW)JF';R(SZ)—""' 50:.5]
= R(s) + 7E” |:R(Sq)+”R(52)+"' _so/—s]

61/269

Bellman equation

VTF(S) = EW[R(So)ﬁ-”R(Sq)-‘r‘;R(Sz)-F"' 50:5] ﬂ“r(tb\’ W
+
— R(S) + VET|RGS) +R(S) 4 [s0=5| Lowd OF . .
|] 12
25\
— mg-+~§:P@qsw@J;”%SQ+JR@g+~“ a—g]
S,—___=-- l — 4\—
| ~ —
= JJ G5, 2=3
Vodut o~
e\

62 /269

Bellman equation
.. SOZS]
e SO—S:|

ZP S |S 7T |: (51)+ R(Sz)

Vi(s) = ET [R(So)ﬁ-”R(Sq)-‘r';R(Sz)‘f—

= R(S) + 1 EYT{R(SW)~+'~R(52)—+

sq——si

R(S) + 7> P(s[s,m(s)) V™ (s)

X

63 /269

Bellman equation

Vi(s) = E”[R(SO)+AR(SW)+*R<SZ>+ "’ 50:5] Ve

So= s]"?[3

= R(S) + ~vE™ l:R(Sq)—F”R(Sz)

X% 5‘\?
= ZPS|ST({ (1) + YR(s2) + S1= s]
RS + 2 Pl R V) V)
The Bellman equation is the basis for much that will follow:
/__S;A all r
— ad. {otan
V7(s) = R(s) + VJZ P(s'|s,7r(s) \ g‘lch
— s L s’; Z

64 [269

Action value function

65 /269

Action value function

Qﬂ(sﬂ CI) =

66 / 269

Action value function

> A'R(se)

t=0

Q"(s,a) = ET

SO :S, G[) — O]

67 /269

Action value function

expected return,
starting from state s,
taking action a,

then following policy =

Q"(s,a) = ET sozs,aoo]

> A'R(se)

t=0

68 /269

Action value function

expected return,
starting from state s,
taking action a,

then following policy =

Q"(s,a) = ET sozs,aoo]

> A'R(se)

t=0

- Motivation

69 /269

Action value function

expected return,

> starting from state s
T(s,a) = ET tR(st)|Sg=S,a0=a . . '
@) ;7 (51) T] taking action q,
— then following policy =
- Motivation yot LS rewe

Useful to imagine how small changesjéffect expected outcomes.
) —> SoF T
%{"e's' Y
&)

70/ 269

Action value function

expected return,
starting from state s,
taking action a,

then following policy =

> A'R(se)

t=0

Q"(s,a) = ET

So=S,dp CI]

- Motivation

Useful to imagine how small changes affect expected outcomes.
What if (just once) the agent acted differently in state s?

71/ 269

Action value function

expected return,
starting from state s,
taking action a,

then following policy =

> A'R(se)

t=0

Q"(s,a) = ET sozs,a@a]

- Motivation

Useful to imagine how small changes affect expected outcomes.
What if (just once) the agent acted differently in state s?

- Analogous to the Bellman equation:

72 /269

Action value function

expected return,
starting from state s,
taking action a,

then following policy =

> A'R(se)

t=0

Q"(s,a) = ET sozs,a@a]

- Motivation

Useful to imagine how small changes affect expected outcomes.
What if (just once) the agent acted differently in state s?

- Analogous to the Bellman equation:
Q™(s,0) = R(s) + 7> _P(SIs(QV™(s)
s

731269

Action value function

expected return,

> starting from state s
Q"(s,a) = E™| Y _+'R(st) sozs,a@a] . . '
— P taking acthn a, ‘
then following policy 7
- Motivation

Useful to imagine how small changes affect expected outcomes.
What if (just once) the agent acted differently in state s?

- Analogous to the Bellman equation:

Q7(s,a) = R(s) + 7Y _P(s[s,) V(')

VT(s) = R(s) + v _P(s'Is, () V7(s)
s’ - 74 | 269

Optimality

75 /269

Optimality

- Goal

76 /269

Optimality

- Goal

Find the optimal policy given the environment that the
agentisin.

77] 269

Optimality

- Goal
Find the optimal policy given the environment that the
agentisin.

- Planning

78 /269

Optimality

- Goal

Find the optimal policy given the environment that the
agentisin.

- Planning

If reward function and transition probabilities are known.

79/ 269

Optimality

- Goal

Find the optimal policy given the environment that the
agentisin.

- Planning

If reward function and transition probabilities are known.

- Reinforcement Learning

80 /269

Optimality

- Goal

Find the optimal policy given the environment that the
agentisin.

- Planning

If reward function and transition probabilities are known.

- Reinforcement Learning
If reward function and transition probabilities are
unknown.

81/269

Optimality

82 /269

Optimality

- Theorem

83 /269

Optimality

- Theorem

There exists at least one policy 7* (and perhaps many) such
that V7 (s) > V7(s) for all policies = and states s of the MDP.

84 /269

Optimality

- Theorem
There exists at least one policyﬁ (and perhaps many) such

that V7 (s) > V7(s) for all policies = and states s of the MDP.

- Notation

85 /269

Optimality

- Theorem

There exists at least one policy 7* (and perhaps many) such
that V7 (s) > V7(s) for all policies = and states s of the MDP.

- Notation

Vi(s) =

86 /269

Optimality

- Theorem

There exists at least one policy 7* (and perhaps many) such
that V7 (s) > V7(s) for all policies = and states s of the MDP.

- Notation

Vis) = VT (s)

87 /269

Optimality

- Theorem

There exists at least one policy 7* (and perhaps many) such
that V7 (s) > V7(s) for all policies = and states s of the MDP.

- Notation

Vis) = VT (s)
Q*(S,O) =

88 /269

Optimality

- Theorem

There exists at least one policy 7* (and perhaps many) such
that V7 (s) > V7(s) for all policies = and states s of the MDP.

- Notation
Vi(s) = V(s)
Q*(s,a) = Q" (s,q)

89 /269

Optimality

- Theorem

There exists at least one policy 7* (and perhaps many) such
that V7 (s) > V7(s) for all policies = and states s of the MDP.

- Notation
_=Vi(s) = VT(s)
) Q*(Sa O) - Qﬂ- (Sa G)

These optimal value functions are unique.

90 /269

Optimality

- Theorem

There exists at least one policy 7* (and perhaps many) such
that V7 (s) > V7(s) for all policies = and states s of the MDP.

- Notation
Vi(s) = V(s)
Q*(s,a) = Q" (s,q)

These optimal value functions are unique.
(All optimal policies share the same value functions.)

91/269

Relations at optimality

92 /269

Relations at optimality

- From the optimal action value function:

93 /269

Relations at optimality

- From the optimal action value function:

Vi(s) =

94 [269

Relations at optimality

- From the optimal action value function:

Vi(s) = max [Q*(S,U)]

95/ 269

Relations at optimality

- From the optimal action value function:

Vi(s) = max [Q*(S,U)]
7*(s) =

96 /269

Relations at optimality

- From the optimal action value function:

VE(s) = max[Q*(s,a)] "V/

m = S—
7(s) = argmax |:Q* s, 0)] “S\Y\ble ch"’ov‘
= =

— \

97 [269

Relations at optimality

- From the optimal action value function:
VE(s) = max[Q*(s,a)]
T*(s) = argmax {Q*(S, G)]

- From the optimal state value function:

98 /269

Relations at optimality

- From the optimal action value function:
VE(s) = max[Q*(s,a)]
m*(s) = argmax {Q*(S, G)]
- From the optimal state value function:

Q*(s,a)

99 /269

Relations at optimality

- From the optimal action value function:

VE(s) = max[Q*(s,a)]
7(s) = argmax {Q*(S, G)]
- From the optimal state value function:

Q*(s,a)

+wz (s'|s, a)v*(s")

100/ 269

Relations at optimality

- From the optimal action value function:

VE(s) = max[Q*(s,a)]
7(s) = argmax {Q*(S, G)]
- From the optimal state value function:

Q*(s,a)

+wz (s']s, a)V*(s")
(s) =

101/ 269

Relations at optimality

- From the optimal action value function:

VE(s) = max[Q*(s,a)]
7(s) = argmax {Q*(S, G)]
- From the optimal state value function:

Q*(s,a)

+wz (s'|s, a)v*(s")

7*(s) = argpwax[+ '}/Z (s'ls,a)vV*(s)}

102 / 269

Relations at optimality

- From the optimal action value function:

VE(s) = max[Q*(s,a)]
7(s) = argmax {Q*(S, G)]
- From the optimal state value function:

Q*(s,a)

+wz (s'|s, a)v*(s")

7*(s) = argpwax[+ '}/Z (s'ls,a)vV*(s)}

- Why are these relations useful?

103 /269

Relations at optimality

- From the optimal action value function:
VE(s) = max[Q*(s,a)]
m*(s) = argmax {Q*(S, 0)]
- From the optimal state value function:

Q*(s,a)

+wz (s'|s, a)v*(s")

7*(s) = argpwax[+ 'yz (s'ls,a)vV*(s)}

- Why are these relations useful?

Sometimes it can be easier to estimate Q*(s, a) or V*(s)

104 / 269

Relations at optimality

- From the optimal action value function:

VE(s) = max[Q*(s,a)]
m*(s) = argmax {Q*(S, 0)]
- From the optimal state value function:

Q*(s,a)

+wz (s'|s, a)v*(s")

7*(s) = argpwax[+ 'yz (s'ls,a)vV*(s)}

- Why are these relations useful?

Sometimes it can be easier to estimate Q*(s, a) or V*(s)
(which are continuous)

105/ 269

Relations at optimality

- From the optimal action value function:

VE(s) = max[Q*(s,a)]
m*(s) = argmax {Q*(S, 0)]
- From the optimal state value function:

Q*(s,a)

) + VZ (s'|s, a)v*(s")
T(s) = argmax[+ '}/Z (s'ls, a)V*(s)}
- Why are these relations useful?

Sometimes it can be easier to estimate Q*(s, a) or V*(s)
(which are continuous) than to learn 7*(s) (which is discrete)

106 / 269

Planning in MDPs

Planning in MDPs

108 /269

Planning in MDPs

Given a complete model of the agent and its environment
as a Markov decision process,

109 /269

Planning in MDPs

Given a complete model of the agent and its environment
as a Markov decision process, namely

MDP = {S,A,P(s'ls,a),R(S), 7},

110 / 269

Planning in MDPs

Given a complete model of the agent and its environment
as a Markov decision process, namely

MDP = {S,A,P(s'ls,a),R(S), 7},

how can we efficiently compute

111/ 269

Planning in MDPs

Given a complete model of the agent and its environment
as a Markov decision process, namely

MDP = {S,A,P(s'ls,a),R(S), 7},

how can we efficiently compute (i.e., in time polynomial in the
number of states)

12 /269

Planning in MDPs

Given a complete model of the agent and its environment
as a Markov decision process, namely

MDP = {S,A,P(s'ls,a),R(S), 7},

how can we efficiently compute (i.e., in time polynomial in the
number of states) any of the following:

13 /269

Planning in MDPs

Given a complete model of the agent and its environment
as a Markov decision process, namely

MDP = {S,A,P(s'ls,a),R(S), 7},

how can we efficiently compute (i.e., in time polynomial in the
number of states) any of the following:

1. an optimal policy 7*(s)?

14 [269

Planning in MDPs

Given a complete model of the agent and its environment
as a Markov decision process, namely

MDP = {S,A,P(s'ls,a),R(S), 7},

how can we efficiently compute (i.e., in time polynomial in the
number of states) any of the following:

1. an optimal policy 7*(s)?
2. the optimal state value function V*(s)?

115/ 269

Planning in MDPs

Given a complete model of the agent and its environment
as a Markov decision process, namely

MDP = {S,A,P(s'ls,a),R(S), 7},

how can we efficiently compute (i.e., in time polynomial in the
number of states) any of the following:

1. an optimal policy 7*(s)?
2. the optimal state value function V*(s)?

3. the optimal action value function Q*(s,a)?

16 /269

Planning in MDPs

Given a complete model of the agent and its environment
as a Markov decision process, namely

MDP = {S,A,P(s'ls,a),R(S), 7},

how can we efficiently compute (i.e., in time polynomial in the
number of states) any of the following:

1. an optimal policy 7*(s)?
2. the optimal state value function V*(s)?

3. the optimal action value function Q*(s,a)?

This is the problem of planning in MDPS.‘

17 /269

Policy Based

Algorithms

119 /269

Algorithms

1. Policy evaluation

How to compute V7™(s) for some fixed policy 7?

120/ 269

Algorithms

1. Policy evaluation

How to compute V7™(s) for some fixed policy 7?

2. Policy improvement

How to compute a policy 7’ such that V™' (s) > V7(s)?

121/ 269

Algorithms

1. Policy evaluation

How to compute V7™(s) for some fixed policy 7?

2. Policy improvement

How to compute a policy 7’ such that V™' (s) > V7(s)?

3. Policy iteration

How to compute an optimal policy 7*(s)?

122 /269

Policy evaluation

123 /269

Policy evaluation

- How to compute the state value function?

124 /269

Policy evaluation

- How to compute the state value function?

So :S]

Vi(s) = ET [Z 7'R(st)

t=0

125 /269

Policy evaluation

- How to compute the state value function?

So :S]

Vi(s) = ET [i 7'R(st)

t=0

- Bellman equation:

126 / 269

Policy evaluation

- How to compute the state value function?

So :S]

VT(s) = R(S) + v Y P(s'Is,m(s)) V()

Vi(s) = ET [i 7'R(st)

t=0

- Bellman equation:

127/ 269

Policy evaluation

- How to compute the state value function?

So :S]

VT(s) = R(S) + v Y P(s'Is,m(s)) V()

Vi(s) = ET [Z 7'R(st)

t=0

- Bellman equation:

- Solve linear system:

128 /269

Policy evaluation

- How to compute the state value function?

So :S]

VT(s) = R(S) + v Y P(s'Is,m(s)) V()

Vi(s) = ET [Z 7'R(st)

t=0

- Bellman equation:

- Solve linear system: There are n equations for n
unknowns (where s =1,2,...,n).

129 /269

Solving the linear system

130/ 269

Solving the linear system

- From the Bellman equation:

131/ 269

Solving the linear system

- From the Bellman equation:

V(s) = R(s) + v _P(s']s, m(s)) V().

132 /269

Solving the linear system

- From the Bellman equation:

V(s) = R(s) + v _P(s']s, m(s)) V().

- Rearranging terms:

133 /269

Solving the linear system

- From the Bellman equation:

V(s) = R(s) + v _P(s']s, m(s)) V().
K_/ s’

- Rearranging terms:

R(s) = V7(s) =y) P(sls,m(s)V(s)

134/ 269

Solving the linear system

- From the Bellman equation:

V(s) = R(s) + v _P(s']s, m(s)) V().

- Rearranging terms:

R(s) = V7(s) =y) P(sls,m(s)V(s)

zz[

S/

135 /269

Solving the linear system

- From the Bellman equation:

V(s) = R(s) + v _P(s']s, m(s)) V().

- Rearranging terms:

R(s) = V7(s) =y) P(sls,m(s)V(s)

= Z[I(s,s")

S/

136 / 269

Solving the linear system

- From the Bellman equation:

V(s) = R(s) + v _P(s']s, m(s)) V().

- Rearranging terms:

R(s) = V7(s) =y) P(sls,m(s)V(s)

-3l

!/
S identity matrix

137/ 269

Solving the linear system

- From the Bellman equation:

V(s) = R(s) + v _P(s']s, m(s)) V().

- Rearranging terms:

R(s) = V7(s) =y) P(sls,m(s)V(s)

= Y[55) - P

!/
S identity matrix

138 /269

Solving the linear system

- From the Bellman equation:

V(s) = R(s) + v _P(s']s, m(s)) V().

- Rearranging terms:

R(s) = V7(s) =y) P(sls,m(s)V(s)

— Z[I(s,s") — ’yP(S’]S,ﬂ'(S))} V7T (s)

!/
S identity matrix

139 /269

Solving the linear system

- From the Bellman equation:

V(s) = R(s) + v _P(s']s, m(s)) V().

- Rearranging terms:

R(s) = V7(s) =y) P(sls,m(s)V(s)

— Z[I(s,s") — ’yP(S’]S,ﬂ'(S))} V7T (s)

!/
S identity matrix

- In matrix-vector form:

140 / 269

Solving the linear system

- From the Bellman equation:

V(s) = R(s) + v _P(s']s, m(s)) V().

- Rearranging terms:

R(s) = V7(s) =y) P(sls,m(s)V(s)

— Z[I(s,s") — ’yP(S’]S,ﬂ'(S))} V7T (s)

!/
S identity matrix

- In matrix-vector form:

R = [/ —VP”] %

141/ 269

Solving the linear system

- From the Bellman equation:

V(s) = R(s) + v _P(s']s, m(s)) V().

- Rearranging terms:

R(s) = V7(s) =y) P(sls,m(s)V(s)

— Z[I(s,s") — ’yP(S’]S,ﬂ'(S))} V7T (s)

/ S ——
S identity matrix

- In matrix-vector form:

R = [I—fyl?f]\/:]

column vector of _ n x n matrix column vector of
n known rewards (known) n unknown values

-— 142 /269

Solving the linear system (con't)

143 / 269

Solving the linear system (con't)

- Solution

144 [269

Solving the linear system (con't)

- Solution
R = {I—VP”}\/* —

145/ 269

Solving the linear system (con't)

- Solution
R = {I—VP”}\/* — V' = (I—+P")'R
N————

matrix inverse

146 [269

Solving the linear system (con't)

- Solution

R = {I—VP”}\/* = V" = (I-yP") 'R
N————
matrix inverse

- Complexity

147 [269

Solving the linear system (con't)

- Solution
o [I_WPW}W — VT = (PR
———
matrix inverse

- Complexity

It takes O(n?) operations to solve this system of equations.

148 / 269

Solving the linear system (con't)

- Solution
o [I_WPW}W — VT = (PR
SN———
. matrix inverse
- Complexity

It takes O(n?) operations to solve this system of equations.

- Example

149 [269

Solving the linear system (con't)

- Solution
o [I_WPW}W — VT = (PR
SN———
. matrix inverse
- Complexity

It takes O(n?) operations to solve this system of equations.

- Example

Let S = {1,2} and P(s'|s, w(s)) = 0.5 for all (s,s').

150 / 269

Solving the linear system (con't)

- Solution
o [I_WPW}W — VT = (PR
SN———
. matrix inverse
- Complexity

It takes O(n?) operations to solve this system of equations.

- Example

Let S = {1,2} and P(s'|s, w(s)) = 0.5 for all (s,s').
ve() | _
V@) |

151/ 269

Solving the linear system (con't)

- Solution
o [I_WPW}W — VT = (PR
SN———
. matrix inverse
- Complexity

It takes O(n?) operations to solve this system of equations.

- Example

Let S = {1,2} and P(s'|s, w(s)) = 0.5 for all (s,s').
vr(1) | 10
vT2) | 0 1

152 /269

Solving the linear system (con't)

- Solution
o [I_WPW}W — VT = (PR
SN———
. matrix inverse
- Complexity

It takes O(n?) operations to solve this system of equations.

- Example

Let S = {1,2} and P(s'|s, w(s)) = 0.5 for all (s,s').
ve() | 10 05 05\
vy | “ \lo 1| " 7|05 o5

153 /269

Solving the linear system (con't)

- Solution
- [I_VPW}V: = V" = (-7 'R
————
. matrix inverse C’
- Complexity

It takes O(n?) operations to solve this system of equations.

'
- Example g 0-(’7
Let S = {1,2} and P(s’|s,;£5_)) = 0.5 for all (s,5).

vr(l) | 10 205 03 TR
vy |~ (o 1 _,%7 0.5 0.5 RQ) |
(B

154 / 269

e

Policy improvement

155/ 269

Policy improvement

- Problem statement

156 / 269

Policy improvement

- Problem statement

Given a policy w and its state value function V7(s),

157 / 269

Policy improvement

- Problem statement

Given a policy w and its state value function V7(s),
how to compute a policy 7’ such that

158 / 269

Policy improvement

- Problem statement

Given a policy w and its state value function V7(s),
how to compute a policy 7’ such that

V™(s) > V7(s) for all states s?

159 / 269

Policy improvement

- Problem statement

Given a policy w and its state value function V7(s),
how to compute a policy 7’ such that

V™(s) > V7(s) for all states s?

- Definition

160 / 269

Policy improvement

- Problem statement

Given a policy w and its state value function V7(s),
how to compute a policy 7’ such that

V™(s) > V7(s) for all states s?

- Definition

Given the action value function Q"(s, a) for policy m, we
define the greedy policy 7’ by

161/ 269

Policy improvement

- Problem statement

Given a policy w and its state value function V7(s),
how to compute a policy 7’ such that

V™(s) > V7(s) for all states s?

- Definition

Given the action value function Q"(s, a) for policy m, we
define the greedy policy 7’ by x\8

7
[Q“(s,a) :

—_—

7'(s) = argmax
= a

162 /269

Policy improvement

- Problem statement

Given a policy w and its state value function V7(s),
how to compute a policy 7’ such that

V™(s) > V7(s) for all states s?

- Definition

Given the action value function Q"(s, a) for policy m, we
define the greedy policy 7’ by

7'(s) = argmax [Q“(s,a)].
Why greedy?

163 /269

Policy improvement

- Problem statement

Given a policy w and its state value function V7(s),
how to compute a policy 7’ such that

V™(s) > V7(s) for all states s?

- Definition

Given the action value function Q"(s, a) for policy m, we
define the greedy policy 7’ by

7'(s) = argmax [Q“(s,a)].

Why greedy? Because we change the action in state s to

whatever appears to improve the expected return.
164 [269

Greedy policies

165/ 269

Greedy policies

- In terms of the state value function:

166 /269

Greedy policies

- In terms of the state value function:

'(s) = argmax [Q”(S,a)}

167 [269

Greedy policies

- In terms of the state value function: .
&pl\o*"
7'(s) = argmax [Q”(S, a)} T ob"e("ﬁm
a 7, o~
= argmax [)+ WZ (s |S a) ')}
a ——

168 /269

Greedy policies

- In terms of the state value function:

()

argmax
a

argmax |R(s
a

argmax
a

Q”(s,a)}
+vz (s'|s,a) V™ (s)}

_ZS, (s, @) V(")

169 / 269

Greedy policies

- In terms of the state value function:

7'(s) = argmax Q”(S,a)}
= arg(gnax —I—WZ (s'|s,a) V™ (s)}
= argmax _ZS, (s']s,a) V(s)}

- Test your understanding:

170 / 269

Greedy policies

- In terms of the state value function:

7'(s) = argmax Q”(S,a)}
= arg(gnax —I—WZ (s'|s,a) V™ (s)}
= argmax _ZS, (s']s,a) V(s)}

- Test your understanding:

7'(s) = w(s) for some s € §?

171/ 269

Greedy policies

- In terms of the state value function:

7'(s) = argmax Q”(S,a)}
= arg(gnax —I—WZ (s'|s,a) V™ (s)}
= argmax _ZS, (s']s,a) V(s)}

- Test your understanding:

7'(s) = w(s) for some s € §? not necessarily

172/ 269

Greedy policies

- In terms of the state value function:

7'(s) = argmax Q”(S,a)}
= arg(gnax —I—WZ (s'|s,a) V™ (s)}
= argmax _ZS, (s']s,a) V(s)}

- Test your understanding:

7'(s) = w(s) for some s € §? not necessarily

7'(s) # w(s) for some s € S?

173/ 269

Greedy policies

- In terms of the state value function:

7'(s) = argmax Q”(S,a)}
= arg(gnax —I—WZ (s'|s,a) V™ (s)}
= argmax _ZS, (s']s,a) V(s)}

- Test your understanding:

7'(s) = w(s) for some s € §? not necessarily

7'(s) # w(s) for some s € §? not necessarily

174 | 269

Greedy policies

- In terms of the state value function:

7'(s) = argmax Q”(S,a)}
= arg(gnax —I—WZ (s'|s,a) V™ (s)}
= argmax _ZS, (s']s,a) V(s)}

- Test your understanding:

7'(s) = w(s) for some s € §? not necessarily
7'(s) # w(s) for some s € §? not necessarily

Q™(s,7'(s)) > Q"(s,n(s)) forall s € §?

175/ 269

Greedy policies

- In terms of the state value function:

7'(s) = argmax Q”(S,a)}
= arg(gnax —I—WZ (s'|s,a) V™ (s)}
= argmax _ZS, (s']s,a) V(s)}

- Test your understanding:

7'(s) = w(s) for some s € §? not necessarily
7'(s) # w(s) for some s € §? not necessarily

Q™(s,7'(s)) > Q"(s,n(s)) foralls e S? TRUE

176 / 269

Policy improvement

177/ 269

Policy improvement

- Greedy policy:

178 / 269

Policy improvement

- Greedy policy:

7'(s) = argmax Q"(s,a)

179 / 269

Policy improvement

- Greedy policy:

7'(s) = argmax Q"(s,a)

- Theorem:
The greedy policy 7/(s) = arg maxq Q™ (S, a) improves
everywhere on the policy = from which it was derived:

180 /269

Policy improvement

- Greedy policy:
7'(s) = argmax Q"(s,a)
- Theorem:

The greedy policy 7/(s) = arg maxq Q™ (S, a) improves
everywhere on the policy = from which it was derived:

V™ (s) >V7(s) forallstatesseS

181/ 269

Policy improvement

- Greedy policy:
7'(s) = argmax Q"(s,a)

- Theorem:
The greedy policy 7/(s) = arg maxq Q™ (S, a) improves
everywhere on the policy = from which it was derived:

V™ (s) >V7(s) forallstatesseS

« Intuition:

182 /269

Policy improvement

- Greedy policy:
7'(s) = argmax Q"(s,a)
- Theorem:

The greedy policy 7/(s) = arg maxq Q™ (S, a) improves
everywhere on the policy = from which it was derived:

V™ (s) >V7(s) forallstatesseS

« Intuition:

If it's better to choose action a in state s before following
m, then it's always better to make this choice.

183 /269

Policy improvement

- Greedy policy:

7'(s) = argmax Q"(s,a)

- Theorem:
The greedy policy 7/(s) = arg maxq Q™ (S, a) improves
everywhere on the policy = from which it was derived:

V™ (s) >V7(s) forallstatesseS

- Intuition:
If it's better to choose action a in state s before following
m, then it's always better to make this choice.

- Proof idea:
We'll prove a key inequality for one-step deviations from m,

then we'll extend this inequality by an iterative argument.
184 [269

Proof — 1. Deriving the inequality

185 /269

Proof — 1. Deriving the inequality

- Comparing value functions:

186 /269

Proof — 1. Deriving the inequality

- Comparing value functions:

Vi(s) = Q7(s,m(s))

187 /269

Proof — 1. Deriving the inequality

- Comparing value functions:

Vi(s) = Q7(s,m(s))
< mg]xQ"(S,a)

188 /269

Proof — 1. Deriving the inequality

- Comparing value functions:

Vi(s) = Q7(s,m(s))
< mg]xQ"(S,a)

= Q7(s,7(s))

189 /269

Proof — 1. Deriving the inequality

- Comparing value functions:
Vi(s) = Q%(s,7(s))
< mg]xQ"(S,a)
= Q"(s,7(s))
= R(S)+7 Y P(Sls,w(s))V7(s")
>

190 / 269

Proof — 1. Deriving the inequality

- Comparing value functions:

Vi(s) = Q7(s,m(s))
< mg]xQ"(S,a)

= Q7(s,7(s))
= R(s)+7) P(s'Is,w(s)V7(s")

- Combining these steps:

191/ 269

Proof — 1. Deriving the inequality

- Comparing value functions:
Vi(s) = Q%(s,7(s))
< mg]xQ"(S,a)
= O”(S '(s))
= +72 (s|s, 7' (s))V™(s")

- Combining these steps:

VT(s) < R(s)+7 Y _P(s|s, 7 (s))V7(s)

192 /269

Proof — 1. Deriving the inequality

- Comparing value functions:
Vi(s) = Q%(s,7(s))
< mg]xQ"(S,a)
= O”(S '(s))
= +72 (s|s, 7' (s))V™(s")

- Combining these steps:

VT(s) < R(s)+7 Y _P(s|s, 7 (s))V7(s)

- Intuition:

193 /269

Proof — 1. Deriving the inequality

- Comparing value functions:
Vi(s) = Q%(s,7(s))
< mg]xQ"(S,a)
= Q"(s,7(s))
= R(S)+7 Y P(Sls,w(s))V7(s")
>

- Combining these steps:

VT(s) < R(s)+7 Y _P(s|s, 7 (s))V7(s)

- Intuition:

It is better to take one step under 7/, then revert to ,
than to always follow .
194 / 269

Proof — 2. Leveraging the inequality

195/ 269

Proof — 2. Leveraging the inequality

- One-step inequality:

196 / 269

Proof — 2. Leveraging the inequality

- One-step inequality:
VT(s) < R(S)+7) _P(s'ls, ' (s))V"(s)

What happens if we plug this inequality into itself?

197 / 269

Proof — 2. Leveraging the inequality

- One-step inequality:
VT(s) < R(S)+7) _P(s'ls, ' (s))V"(s)

What happens if we plug this inequality into itself?
Then we obtain ...

198 /269

Proof — 2. Leveraging the inequality

- One-step inequality:
VT(s) < R(S)+7) _P(s'ls, ' (s))V"(s)

What happens if we plug this inequality into itself?
Then we obtain ...

- Two-step inequality:

199 /269

Proof — 2. Leveraging the inequality

- One-step inequality:
VT(s) < R(S)+7) _P(s'ls, ' (s))V"(s)

What happens if we plug this inequality into itself?
Then we obtain ...

- Two-step inequality:

V() < R(s)+7) _P(S'Is,m(s)) |R(s) + 7 D> P(s"[s". 7' (s)V7(s")

200/ 269

Proof — 2. Leveraging the inequality

- One-step inequality:
VT(s) < R(S)+7) _P(s'ls, ' (s))V"(s)

What happens if we plug this inequality into itself?
Then we obtain ...

- Two-step inequality:

V() < R(s)+7) _P(S'Is,m(s)) |R(s) + 7 D> P(s"[s". 7' (s)V7(s")

- Intuition:

201/ 269

Proof — 2. Leveraging the inequality

- One-step inequality:
VT(s) < R(S)+7) _P(s'ls, ' (s))V"(s)

What happens if we plug this inequality into itself?
Then we obtain ...

- Two-step inequality:

V() < R(s)+7) _P(S'Is,m(s)) |R(s) + 7 D> P(s"[s". 7' (s)V7(s")

- Intuition:

It is better to take two steps under «’, then revert to ,
than to always follow .

202 / 269

Proof — 3. Taking the limit

203 /269

Proof — 3. Taking the limit

- Two-step inequality:

204 [269

Proof — 3. Taking the limit

- Two-step inequality:

V7(s) < R(S)+1 ZP(5’|5,7r/(s)) [R(s/) + 1 ZP(SNS/,W/(S/))VW(SN):|

s/t

205/ 269

Proof — 3. Taking the limit

- Two-step inequality:

V7(s) < R(S)+1 ZP(5’|5,7r/(s)) [R(s/) + 1 ZP(SNS/,W/(S/))VW(SN):|

s/t

- Apply the inequality t times:

206 / 269

Proof — 3. Taking the limit

- Two-step inequality:
V7(s) < R(S)+1 ZP(5’|5,7r/(s)) [R(s/) + 1 ZP(SNS/,W/(S/))VW(SN):|
- Apply the inequality t times:

It is better to take t steps under «’/, then revert to m,
than to always follow 7.

207 / 269

Proof — 3. Taking the limit

- Two-step inequality:
V7(s) < R(S)+1 ZP(5’|5,7r/(s)) [R(s/) + 1 ZP(SNS/,W/(S/))VW(SN):|
- Apply the inequality t times:

It is better to take t steps under «’/, then revert to m,
than to always follow 7. Last term is of order O(4").

208 / 269

Proof — 3. Taking the limit

- Two-step inequality:

V7(s) < R(S)+1 ZP(5’|5,7r/(s)) [R(s/) + 1 ZP(SNS/,W/(S/))VW(SN):|

- Apply the inequality t times:
It is better to take t steps under «’/, then revert to m,

than to always follow 7. Last term is of order O(~").

- Take the limit t — oc:

209 / 269

Proof — 3. Taking the limit

- Two-step inequality:
V7(s) < R(S)+1 ZP(S/|S,71'/(S)) [R(s/) + 1 ZP(SNS/,W/(S/))VW(SN):|
- Apply the inequality t times:

It is better to take t steps under «’/, then revert to m,
than to always follow 7. Last term is of order O(4").

- Take the limit t — oc:

It is better to follow 7 (always) than to follow 7 (always).

210/ 269

Proof — 3. Taking the limit

- Two-step inequality:
V7(s) < R(S)+1 ZP(S/|S,71'/(S)) [R(s/) + 1 ZP(SNS/,W/(S/))VW(SN):|
- Apply the inequality t times:

It is better to take t steps under «’/, then revert to m,
than to always follow 7. Last term is of order O(4").

- Take the limit t — oc:

It is better to follow 7 (always) than to follow 7 (always).
Conclude that V™(s) < V™(s) for all states s € S.

211/ 269

Policy iteration

212/ 269

Policy iteration

How to compute 7*?

213 /269

Policy iteration

How to compute 7*?

1. Choose an initial policy 7 : S — A.

214 [269

Policy iteration

How to compute 7*?
1. Choose an initial policy 7 : S — A.

2. Repeat until convergence:

215/ 269

Policy iteration

How to compute 7*?
1. Choose an initial policy 7 : S — A.

2. Repeat until convergence:

Compute the action value function Q™(s, a).

216/ 269

Policy iteration

How to compute 7*?
1. Choose an initial policy 7 : S — A.

2. Repeat until convergence:

Compute the action value function Q™(s, a).
Compute the greedy policy 7'(s) = argmaxq Q7 (s, a).

217 [269

Policy iteration

How to compute 7*?
1. Choose an initial policy 7 : S — A.

2. Repeat until convergence:

Compute the action value function Q™(s, a).
Compute the greedy policy 7'(s) = argmaxq Q7 (s, a).
Replace 7 by 7.

218 / 269

Policy iteration

How to compute 7*?
1. Choose an initial policy 7 : S — A.

2. Repeat until convergence:

Compute the action value function Q™(s, a).
Compute the greedy policy 7'(s) = argmaxq Q7 (s, a).
Replace 7 by 7.

0

219/ 269

Policy iteration

How to compute 7*?
1. Choose an initial policy 7 : S — A.

2. Repeat until convergence:

Compute the action value function Q™(s, a).
Compute the greedy policy 7'(s) = argmaxq Q7 (s, a).
Replace 7 by 7.

evaluate
) —_—

220/ 269

Policy iteration

How to compute 7*?
1. Choose an initial policy 7 : S — A.

2. Repeat until convergence:

Compute the action value function Q™(s, a).
Compute the greedy policy 7'(s) = argmaxq Q7 (s, a).
Replace 7 by 7.

evaluate V7o (s)
) —_—

2211269

Policy iteration

How to compute 7*?
1. Choose an initial policy 7 : S — A.

2. Repeat until convergence:

Compute the action value function Q™(s, a).
Compute the greedy policy 7'(s) = argmaxq Q7 (s, a).
Replace 7 by 7.

evaluate V7o (s)

Q™o(s,a)

0

222 [269

Policy iteration

How to compute 7*?
1. Choose an initial policy 7 : S — A.

2. Repeat until convergence:

Compute the action value function Q™(s, a).
Compute the greedy policy 7'(s) = argmaxq Q7 (s, a).
Replace 7 by 7.

evaluate V™o (s) improve

Q™o(s,a)

0

223 /269

Policy iteration

How to compute 7*?
1. Choose an initial policy 7 : S — A.

2. Repeat until convergence:

Compute the action value function Q™(s, a).
Compute the greedy policy 7'(s) = argmaxq Q7 (s, a).
Replace 7 by 7.

evaluate V™o (s) improve evaluate

—
o Q™ (s, a) B

224 [269

Policy iteration

How to compute 7*?
1. Choose an initial policy 7 : S — A.

2. Repeat until convergence:

Compute the action value function Q™(s, a).
Compute the greedy policy 7'(s) = argmaxq Q7 (s, a).
Replace 7 by 7.

evaluate V7o (s) improve evaluate V™i(s)
E—

—
o Q™ (s, a) B

225/ 269

Policy iteration

How to compute 7*?
1. Choose an initial policy 7 : S — A.

2. Repeat until convergence:

Compute the action value function Q™(s, a).
Compute the greedy policy 7'(s) = argmaxq Q7 (s, a).
Replace 7 by 7.

evaluate V™o (s) improve evaluate Vi
sl —_—

1
Q”O(S,G) Qm(

0

226 /269

Policy iteration

How to compute 7*?
1. Choose an initial policy 7 : S — A.

2. Repeat until convergence:

Compute the action value function Q™(s, a).
Compute the greedy policy 7'(s) = argmaxq Q7 (s, a).
Replace 7 by 7.

evaluate V™o (s) improve evaluate Vi
sl —_—

1
Q”O(S,G) Qm(

improve
)

227 269

Policy iteration

How to compute 7*?
1. Choose an initial policy 7 : S — A.

2. Repeat until convergence:

Compute the action value function Q™(s, a).
Compute the greedy policy 7'(s) = argmaxq Q7 (s, a).
Replace 7 by 7.

evaluate V™o (s) improve evaluate Vi
sl —_—

1
Q”O(S,G) Q7\'1(

improve

0 _ ...

Policy iteration is guaranteed to terminate.

True (A) or False (B)?

228 /269

Policy iteration

229 /269

Policy iteration

- How to compute 7*?

230/ 269

Policy iteration

- How to compute 7*?

evaluate V™o(s) improve evaluate

—> o
o Q™ (s, a) i

231/ 269

Policy iteration

- How to compute 7*?

evaluate V™o(s) improve evaluate

—> o
o Q™ (s, a) i

This process is guaranteed to terminate.

232/ 269

Policy iteration

- How to compute 7*?

evaluate V™o(s) improve evaluate

—> o
o Q™ (s, a) i

This process is guaranteed to terminate.
But does it converge to an optimal policy?

233 /269

Policy iteration

- How to compute 7*?

evaluate V™o(s) improve evaluate

—> o
o Q™ (s, a) i

This process is guaranteed to terminate.
But does it converge to an optimal policy?

+ Theorem

234 /269

Policy iteration

- How to compute 7*?

evaluate V™o(s) improve evaluate

—> —> o
o Q™ (s, a) i

This process is guaranteed to terminate.
But does it converge to an optimal policy?

+ Theorem

If 7/(s) = arg maxq Q(s,a) and V™'(s) = V7(s) forall s € S,

235/ 269

Policy iteration

- How to compute 7*?

evaluate V™o(s) improve evaluate
Ty — _ M — -
Q™ (s,a)

This process is guaranteed to terminate.
But does it converge to an optimal policy?

+ Theorem

If 7/(s) = arg maxq Q(s,a) and V™'(s) = V7(s) forall s € S,
then V7(s) = V*(s) forall s € S.

236/ 269

Policy iteration

- How to compute 7*?

evaluate V™o(s) improve evaluate

—> o
o Q™ (s, a) i

This process is guaranteed to terminate.
But does it converge to an optimal policy?

+ Theorem

If 7/(s) = arg maxq Q(s,a) and V™'(s) = V7(s) forall s € S,
then V7(s) = V*(s) forall s € S.

- Proof idea

237/ 269

Policy iteration

- How to compute 7*?

evaluate V™o(s) improve evaluate

—> o
o Q™ (s, a) i

This process is guaranteed to terminate.
But does it converge to an optimal policy?

- Theorem
If 7/(s) = arg maxq Q(s,a) and V™'(s) = V7(s) forall s € S,
then V7(s) = V*(s) forall s € S.

- Proof idea

Prove a key equality/inequality for terminal/non-terminal
policies;

238 /269

Policy iteration

- How to compute 7*?

evaluate V™o(s) improve evaluate

—> o
o Q™ (s, a) i

This process is guaranteed to terminate.
But does it converge to an optimal policy?

- Theorem
If 7/(s) = arg maxq Q(s,a) and V™'(s) = V7(s) forall s € S,
then V7(s) = V*(s) forall s € S.

- Proof idea

Prove a key equality/inequality for terminal/non-terminal
policies; iterate t times, then compare the limits as t — oc.

239 /269

Proof — 1. Bellman optimality equation

240 [269

Proof — 1. Bellman optimality equation

- Suppose policy iteration converges to 7.

241 [269

Proof — 1. Bellman optimality equation

- Suppose policy iteration converges to 7.

V(s) = R(s)+ D P(s'ls,7(s))V" () |Bellman equation]|

242 [269

Proof — 1. Bellman optimality equation

- Suppose policy iteration converges to 7.

V(s) = R(s)+ D P(s'ls,7(s))V" () |Bellman equation]|

R(s) + 73 P(S'ls 7 (9)V7(S")
s/

V7(s)

243 [269

Proof — 1. Bellman optimality equation

- Suppose policy iteration converges to 7.

V(s) = R(s)+ D P(s'ls,7(s))V" () |Bellman equation]|

R(s) + 73 P(S'ls 7 (9)V7(S")
s/

Now exploit that " is greedy with respect to = ...

V7(s)

244 [269

Proof — 1. Bellman optimality equation

- Suppose policy iteration converges to 7.

V(s) = R(s)+ D P(s'ls,7(s))V" () |Bellman equation]|

R(s) + 73 P(S'ls 7 (9)V7(S")
s/

Now exploit that " is greedy with respect to = ...

V7(s)

- Bellman optimality equation

245 [269

Proof — 1. Bellman optimality equation

- Suppose policy iteration converges to 7.

V(s) = R(s)+ D P(s'ls,7(s))V" () |Bellman equation]|

R(s) + 73 P(S'ls 7 (9)V7(S")
s/

Now exploit that " is greedy with respect to = ...

V7(s)

- Bellman optimality equation

V™(s) = R(s) + ymﬁngP(sﬂs, a)V™(s')

X

246 [269

Proof — 1. Bellman optimality equation

- Suppose policy iteration converges to 7.

V(s) = R(s)+ D P(s'ls,7(s))V" () |Bellman equation]|

R(s) + 73 P(S'ls 7 (9)V7(S")
s/

Now exploit that " is greedy with respect to = ...

V7(s)

- Bellman optimality equation

V™(s) = R(s) + ymﬁngP(sﬂs, a)V™(s')

X

These equations are nonlinear due to the max operation.

247 [269

Proof — 1. Bellman optimality equation

- Suppose policy iteration converges to 7.

V(s) = R(s) + VZ P(s'|s, 7 (s))V" (s") ’ Bellman equation ‘

R(s) + 73 P(S'ls 7 (9)V7(S")
s/

Now exploit that " is greedy with respect to = ...

V7(s)

- Bellman optimality equation

V™(s) = R(s) + ’ymﬁaxZP(SﬂS, a)V™(s')

X

These equations are nonlinear due to the max operation.
There are n equations for n unknowns (where s =1,2,...,n).

248 [269

Proof — 2. Inequality

249 [269

Proof — 2. Inequality

- Let 7 be any policy of the MDP:

250/ 269

Proof — 2. Inequality

- Let 7 be any policy of the MDP:

Vi(s) = R(s) + > _P(s'ls, #(s))V"(s") ’ Bellman equation

251/ 269

Proof — 2. Inequality

- Let 7 be any policy of the MDP:

Vi(s) = R(s) + > _P(s'ls, #(s))V"(s") ’ Bellman equation‘

VA (s) R(s) + ymax >~ P(s'[s,a)V"(s)

252 /269

Proof — 2. Inequality

- Let 7 be any policy of the MDP:

Vi(s) = R(s) + > _P(s'ls, #(s))V"(s") ’ Bellman equation‘
Vi) < R(s) + ymax Y P(s'ls, a)V*(s)

- Compare to Bellman optimality equation (BOE):

253 /269

Proof — 2. Inequality

- Let 7 be any policy of the MDP:

Vi(s) = R(s) + > _P(s'ls, #(s))V"(s") ’ Bellman equation‘
Vi) < R(s) + ymax Y P(s'ls, a)V*(s)

- Compare to Bellman optimality equation (BOE):

VT (s) R(s) + v muaxz P(s'|s,a))V™(s")

s/

254 [269

Proof — 2. Inequality

- Let 7 be any policy of the MDP:

Vi(s) = R(s) + > _P(s'ls, #(s))V"(s") ’ Bellman equation ‘
Vi) < R(s) + ymax Y P(s'ls, a)V*(s)
- Compare to Bellman optimality equation (BOE):

VT (s) R(s) + v muaxz P(s'|s,a))V™(s")

s/

- Understanding the difference:

255 /269

Proof — 2. Inequality

- Let 7 be any policy of the MDP:

Vi(s) = R(s) + > _P(s'ls, #(s))V"(s") ’ Bellman equation‘
Vi) < R(s) + ymax Y P(s'ls, a)V*(s)

- Compare to Bellman optimality equation (BOE):

VT (s) R(s) + v muaxz P(s'|s,a))V™(s")

s/

- Understanding the difference:

The inequality holds for any policy 7 of the MDP.

256 / 269

Proof — 2. Inequality

- Let 7 be any policy of the MDP:

Vi(s) = R(s) + > _P(s'ls, #(s))V"(s") ’ Bellman equation‘
Vi) < R(s) + ymax Y P(s'ls, a)V*(s)

- Compare to Bellman optimality equation (BOE):

VT (s) R(s) + v muaxz P(s'|s,a))V™(s")

s/

- Understanding the difference:

The inequality holds for any policy 7 of the MDP.
The BOE only holds for a solution « from policy iteration.

257 /269

Proof — 3. Taking the limit

258 /269

Proof — 3. Taking the limit

- Iterating the inequality:

259 /269

Proof — 3. Taking the limit

- Iterating the inequality:

VE(s) < R(s) + wmgxzslP(s’ls,a)V’”’(s’)

260 / 269

Proof — 3. Taking the limit

- Iterating the inequality:
VE(s) < R(s) + wmgxzslP(s’ls,a)V’”’(s’)

< R(s) +’ymaaxZS/P(s'|s7a)[) + ,maxz (s"|s", a7 (s)}

261/269

Proof — 3. Taking the limit

- Iterating the inequality:
VA(s) < R(s) + wmgxzs/P(s’ls,a)V’”’(s’)

< R(S)—i—vmaaxZS/P(s'|S7a){ +wmaxz (s"|s", a7 (s)}

- Iterating the BOE:

262 /269

Proof — 3. Taking the limit

- Iterating the inequality:
VA(s) < R(s) + wmgxzs/P(s’ls,a)V’”’(s’)

< R(S)—i—vmaaxZS/P(s'|S7a){ +wmaxz (s"|s", a7 (s)}

- Iterating the BOE:
VT(s) = R(s) + v mfxzs,P(5'|Sva)V”(s/)

263 /269

Proof — 3. Taking the limit

- Iterating the inequality:
VA(s) < R(s) + wmgxzs/P(s’ls,a)V’”’(s’)

< R(S)—i—vmaaxZS/P(s'|S7a){ +wmaxz (s"|s", a7 (s)}

- Iterating the BOE:
VT(s) = R(s) + v mfxzs,P(5'|Sva)V”(s/)
= R(s) + vmaaxZS/P(s’b,a) [) 4+~ maxz P(s"|s", ')V (s)}

264 [269

Proof — 3. Taking the limit

- Iterating the inequality:
VA(s) < R(s) + wmgxzs/P(s’ls,a)V’”’(s’)

< R(S)—i—vmaaxZS/P(s'|S7a){ +wmaxz (s"|s", a7 (s)}

- Iterating the BOE:
VT(s) = R(s) + v mfxzs,P(5'|Sva)V”(s/)

R(s) + ymax)y P(s'|s,a) |R([)+ maxz P(s”|s", a" V7 (s’)}

- Iterating t times:

265/ 269

Proof — 3. Taking the limit

- Iterating the inequality:
VA(s) < R(s) + wmgxzs/P(s’ls,a)V’”’(s’)

< R(S)—i—vmaaxZS/P(s'|S7a){ +wmaxz (s"|s", a7 (s)}

- Iterating the BOE:
VT(s) = R(s) + v mfxzs,P(5'|Sva)V”(s/)

R(s) + ymax)y P(s'|s,a) |R([)+ maxz P(s”|s", a" V7 (s’)}

- Iterating t times:

Both right sides agree up to term of order ~'.

266 / 269

Proof — 3. Taking the limit

- Iterating the inequality:
VA(s) < R(s) + wmgxzs/P(s’ls,a)V’”’(s’)

< R(S)—i—vmaaxZS/P(s'|S7a){ +wmaxz (s"|s", a7 (s)}

- Iterating the BOE:
VT(s) = R(s) + v mfxzs,P(5'|Sva)V”(s/)

R(s) + ymax)y P(s'|s,a) |R([)+ maxz P(s”|s", a" V7 (s’)}

- Iterating t times:

Both right sides agree up to term of order ~'.
Taking the limit t — oo, we find V#(s) < vV™(s) foralls € S.

267 269

Proof — 3. Taking the limit

- Iterating the inequality:
VA(s) < R(s) + wmgxzs/P(s’ls,a)V’”’(s’)

< R(S)—i—vmaaxZS/P(s'|S7a){ +wmaxz (s"|s", a7 (s)}

- Iterating the BOE:
VT(s) = R(s) + v mfxzs,P(5'|Sva)V”(s/)
= R(s) + vmaaxZS/P(s’b,a) [) 4+~ maxz P(s"|s", ')V (s)}

- Iterating t times:

Both right sides agree up to term of order ~'.
Taking the limit t — oo, we find V#(s) < vV™(s) foralls € S.

Since 7 is arbitrary, we conclude that = is optimal ‘

268 / 269

That's all folks!

269 / 269

