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Review



Reinforcement learning (RL)

- Learning from experience in the world

—» agent

state s,

action a,
reward r,

environment «—

- Formalization as Markov decision process

S state space %m\@.

A action space M
> P(s/ys,g transition probabilities
R(s) reward function
—
MDP {8, A,P(S']s,a),R(s)}

—
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Decision-making in MDPs

- Definition e
—
A policy 7 : S — A is a mapping of states to actions.
In this class we will only consider deterministic policies.
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Decision-making in MDPs

- Definition

A policy 7 : S — A is a mapping of states to actions.

In this class we will only consider deterministic policies.
- Number of policies

If there are | A| possible actions in each of |S| states,
then there are combinatorially many policies:

# policies = |A|lS!
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Decision-making in MDPs

- Definition

A policy 7 : S — A is a mapping of states to actions.
In this class we will only consider deterministic policies.

- Number of policies

If there are | A| possible actions in each of |S| states,
then there are combinatorially many policies:

# policies = |A|lS!

- Experience under policy =

m(So) 7($1)
state s —— 59 —— S5,

reward rg I ry

Transitions occur with probabilities P(s'|s, 7(s)).
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Test your understanding

dateemimic ¢

A policyfvlr completely determines the next state s’ that an
agent will end up in after taking an action from state s.

True (A) or
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How to measure long-term return?
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How to measure long-term return?

1. Finite-horizon return
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1 .
return = ?(ro +r+---+rr—q) foraT-step horizon
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How to measure long-term return?

1. Finite-horizon return

1 .
return = ?(ro +r+---+rr—q) foraT-step horizon

2. Undiscounted return with infinite horizon

1 T—1
return = i - r
Tl~>moo [T Z t]
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How to measure long-term return?

1. Finite-horizon return

1 .
return = ?(ro +r+---+rr—q) foraT-step horizon
2. Undiscounted return with infinite horizon
1 T—1
return = i = r
tin 151
These are the most obvious ways to accumulate rewards.
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How to measure long-term return?

1. Finite-horizon return

1 .
return = ?(ro +r+---+rr—q) foraT-step horizon

2. Undiscounted return with infinite horizon

1 T—1
return = i - r
Tl~>moo [T Z t]

These are the most obvious ways to accumulate rewards.
But they are not the most commonly used in practice ...
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How to measure long-term return? (con't)
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How to measure long-term return? (con't)

3. Discounted return with infinite horizon
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How to measure long-term return? (con't)

3. Discounted return with infinite horizon

Let v € [0,1) denote the so-called discount factor.
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How to measure long-term return? (con't)

3. Discounted return with infinite horizon

Let v € [0,1) denote the so-called discount factor.
Then define

(o]
return = ro+yn+ R+ R+ = Y '
t=0
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How to measure long-term return? (con't)

3. Discounted return with infinite horizon

Let v € [0,1) denote the so-called discount factor.
Then define

[ee]
return = ro+yn+n+Y s+ = > '
t=0

What does it mean when the discount factor y << 1?
A. Immediate and future rewards are valued equally.

B. Future rewards are heavily discounted compared to
immediate.

C. Future rewards are lightly discounted compared to
immediate.

D. Only future rewards are considered.
- 20 /269




How to measure long-term return? (con't)

3. Discounted return with infinite horizon

Let v € [0,1) denote the so-called discount factor.
Then define

[ee]
return = ro+yn+n+Y s+ = > '
t=0

What does it mean when the discount factor v ~ 1?
A. Immediate and future rewards are valued equally.

B. Future rewards are heavily discounted compared to
immediate.

C. Future rewards are lightly discounted compared to
immediate.

D. Only future rewards are considered.
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How to measure long-term return? (con't)

3. Discounted return with infinite horizon Let v € [0, 1)

denote the so-called discount factor.
Then define

[o.e]
return = ro+yn+ YR+ 4 = Y A
t=0

When ~ < 1, future rewards are heavily discounted.
These returns can be optimized by short-sighted agents.

When ~ is close to 1, future rewards are lightly discounted.
These returns can only be optimized by far-sighted agents.
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Motivation for v € [0, 1)
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Motivation for v € [0, 1)

Psychologist: Why discount rewards from the distant future?
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Economist:  Why favor investments with short-term payoffs?
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Motivation for v € [0, 1)
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Many models are only approximations to the real world;
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Motivation for v € [0, 1)

Psychologist: Why discount rewards from the distant future?
Economist:  Why favor investments with short-term payoffs?

1. Intuition

Many models are only approximations to the real world;
we should not attempt to extrapolate them indefinitely.
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Motivation for v € [0, 1)

Psychologist: Why discount rewards from the distant future?
Economist:  Why favor investments with short-term payoffs?

1. Intuition

Many models are only approximations to the real world;
we should not attempt to extrapolate them indefinitely.

2. Mathematical convenience

Discounted returns lead to simple iterative algorithms
with strong guarantees of convergence.
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What to optimize?
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What to optimize?

The discounted return Y%, +'r; is a random variable.
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What to optimize?

The discounted return Y%, +'r; is a random variable.
But we can try to optimize its expected value:
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What to optimize?

The discounted return Y%, +'r; is a random variable.
But we can try to optimize its expected value:

the expected value of the
] discount@ infinite-horizon return,
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What to optimize?

The discounted return Y%, +'r; is a random variable.
But we can try to optimize its expected value:

the expected value of the
discounted infinite-horizon return,
starting in state s at time t=0,
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What to optimize?

The discounted return Y%, +'r; is a random variable.
But we can try to optimize its expected value:

the expected value of the
P discounted infinite-horizon return,
0~ starting in state s at time t=0,

and following policy .
—_—

E?[i” IR(St)

t=0
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What to optimize?

The discounted return Y%, +'r; is a random variable.
But we can try to optimize its expected value:

the expected value of the

so:s] discgunt@ inﬁnite—ho.r/zon return,
starting in state s at time t=0,
and following policy .

Eﬂ[i” IR(St)

t=0

Maximizing the expected return is:
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What to optimize?

The discounted return Y%, +'r; is a random variable.
But we can try to optimize its expected value:

the expected value of the

so:s] d/scgtlfvt?d inﬁnite—ho.r/zon return,
starting in state s at time t=0,
and following policy .

EW[iJR(st)

t=0

Maximizing the expected return is:

- generally wiser than maximizing the best-case return,
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What to optimize?

The discounted return Y%, +'r; is a random variable.
But we can try to optimize its expected value:

the expected value of the

so:s] d/scgtlfvt?d inﬁnite—ho.r/zon return,
starting in state s at time t=0,
and following policy .

EW[iJR(st)

t=0

Maximizing the expected return is:

- generally wiser than maximizing the best-case return,
- but not as robust as minimizing the worst-case return.
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Value functions




State value function
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State value function
So :S]

> A'R(se)

t=0

Vi(s) = ET
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State value function

] expected return,

> A'R(se)

t=0

VE(s) = EF So=S

-

starting in state s,
following policy 7

43 /269



State value function

expected return,
Vi(s) = ET so:s] starting in state s,

following policy 7

> A'R(se)

t=0

- Values versus rewards:
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State value function

expected return,
So :S]

> A'R(se)

t=0

Vi(s) = ET starting in state s,

following policy 7

- Values versus rewards:

The reward R(s) give immediate feedback to the agent.
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State value function

expected return,
Vi(s) = ET so:s] starting in state s,

following policy 7

> A'R(se)

t=0

- Values versus rewards:

The reward R(s) give immediate feedback to the agent.
The value V™(s) computes the expected long-term return.
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State value function

expected return,
Vi(s) = ET so:s] starting in state s,

following policy 7

> A'R(se)

t=0

- Values versus rewards:

The reward R(s) give immediate feedback to the agent.
The value V™(s) computes the expected long-term return.

- Types of behaviors:
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State value function

expected return,
Vi(s) = ET so:s] starting in state s,

following policy 7

> A'R(se)

t=0

- Values versus rewards:

The reward R(s) give immediate feedback to the agent.
The value V™(s) computes the expected long-term return.

- Types of behaviors:

Sacrifice now for long-term gain: R(s) < 0, V™(s) > 0.
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State value function

expected return,
Vi(s) = ET so:s]

l

- Values versus rewards:

starting in state s,
\following policy

> A'R(se)

t=0

The reward R(s) give immediate feedback to the agent.
The value V™(s) computes the expected long-term return.

- Types of behaviors:

Sacrifice now for long-term gain: R(s) < 0, V™(s) > 0.
Win now at the expense of later: R(s) > 0, V™(s) < 0.
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Properties of the state value function
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Properties of the state value function

- Experience under policy =
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Properties of the state value function

- Experience under policy =

7(So) m(s1)
state s ——— S — % 5
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Properties of the state value function

- Experience under policy =

7(So) m(s1)
state s ——— S — % 5

reward rg r Iy

- Adjacent states

States (s, ') can be visited in succession if

P(s'|s,m(s)) >0
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Properties of the state value function

- Experience under policy =

7(So) m(s1)
state s ——— S — % 5

reward rg r Iy

- Adjacent states

States (s, ') can be visited in succession if
P(s'|s, m(s)) > O.

The values V7(s) and V™ (s’) should be related, but how?
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Properties of the state value function

- Experience under policy =

7(So) m(s1)
state s ——— S — % 5

reward rg I Iy
- Adjacent (s)’[cates /:7

v L o
States (s, s’) can be visited in succession if
Pgs’ siwgs)) > 0. —_—

—

The values V7(s) and V™ (s’) should be related, but how?

’The Bellman equation tells us how.
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Bellman equation
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Bellman equation

VT(s) =
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Bellman equation
SOZS]

—

VTF(S) = E7 |:R(So)+ﬁR(Sq)+"R(Sz)‘f'"'
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Bellman equation

VT(s) = EW[R(SO)'F;R(SW)JF';R(SZ)—""' 50:.5]
= R(s) + 7E” |:R(Sq)+”R(52)+"' _so/—s]
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Bellman equation

VTF(S) = EW[R(So)ﬁ-”R(Sq)-‘r‘;R(Sz)-F"' 50:5] ﬂ“r(tb\’ W
+
— R(S) + VET|RGS) +R(S) 4 [s0=5| Lowd OF . .
| ] 12
25\
— mg-+~§:P@qsw@J;”%SQ+JR@g+~“ a—g]
S,—___=-- l — 4\—
| ~ —
= JJ G5, 2=3
Vodut o~
e\
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Bellman equation
.. SOZS]
e SO—S:|

ZP S |S 7T |: (51)+ R(Sz)

Vi(s) = ET [R(So)ﬁ-”R(Sq)-‘r';R(Sz)‘f—

= R(S) + 1 EYT{R(SW)~+'~R(52)—+

sq——si

R(S) + 7> P(s[s,m(s)) V™ (s)

X
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Bellman equation

Vi(s) = E”[R(SO)+AR(SW)+*R<SZ>+ "’ 50:5] Ve

So= s]"?[ 3

= R(S) + ~vE™ l:R(Sq)—F”R(Sz)

X% 5‘\?
= ZPS|ST( { (1) + YR(s2) + S1= s]
RS + 2 Pl R V) V)
The Bellman equation is the basis for much that will follow:
/__S;A all r
— ad. {otan
V7(s) = R(s) + VJZ P(s'|s,7r(s) \ g‘lch
— s L s’; Z
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Action value function
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Action value function

Qﬂ(sﬂ CI) =
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Action value function

> A'R(se)

t=0

Q"(s,a) = ET

SO :S, G[) — O]
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Action value function

expected return,
starting from state s,
taking action a,

then following policy =

Q"(s,a) = ET sozs,aoo]

> A'R(se)

t=0
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Action value function

expected return,
starting from state s,
taking action a,

then following policy =

Q"(s,a) = ET sozs,aoo]

> A'R(se)

t=0

- Motivation
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Action value function

expected return,

> starting from state s
T(s,a) = ET tR(st)|Sg=S,a0=a . . '
@) ;7 (51) T ] taking action q,
— then following policy =
- Motivation yot LS rewe

Useful to imagine how small changesjéffect expected outcomes.
) —> SoF T
%{"e's' Y
&)
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Action value function

expected return,
starting from state s,
taking action a,

then following policy =

> A'R(se)

t=0

Q"(s,a) = ET

So=S,dp CI]

- Motivation

Useful to imagine how small changes affect expected outcomes.
What if (just once) the agent acted differently in state s?
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Action value function

expected return,
starting from state s,
taking action a,

then following policy =

> A'R(se)

t=0

Q"(s,a) = ET sozs,a@a]

- Motivation

Useful to imagine how small changes affect expected outcomes.
What if (just once) the agent acted differently in state s?

- Analogous to the Bellman equation:
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Action value function

expected return,
starting from state s,
taking action a,

then following policy =

> A'R(se)

t=0

Q"(s,a) = ET sozs,a@a]

- Motivation

Useful to imagine how small changes affect expected outcomes.
What if (just once) the agent acted differently in state s?

- Analogous to the Bellman equation:
Q™(s,0) = R(s) + 7> _P(SIs(QV™(s)
s
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Action value function

expected return,

> starting from state s
Q"(s,a) = E™| Y _+'R(st) sozs,a@a] . . '
— P taking acthn a, ‘
then following policy 7
- Motivation

Useful to imagine how small changes affect expected outcomes.
What if (just once) the agent acted differently in state s?

- Analogous to the Bellman equation:

Q7(s,a) = R(s) + 7Y _P(s[s, ) V(')

VT(s) = R(s) + v _P(s'Is, () V7(s)
s’ - 74 | 269



Optimality

75 /269



Optimality

- Goal
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Optimality

- Goal

Find the optimal policy given the environment that the
agentisin.
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Optimality

- Goal
Find the optimal policy given the environment that the
agentisin.

- Planning
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Optimality

- Goal

Find the optimal policy given the environment that the
agentisin.

- Planning

If reward function and transition probabilities are known.
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Optimality

- Goal

Find the optimal policy given the environment that the
agentisin.

- Planning

If reward function and transition probabilities are known.

- Reinforcement Learning
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Optimality

- Goal

Find the optimal policy given the environment that the
agentisin.

- Planning

If reward function and transition probabilities are known.

- Reinforcement Learning
If reward function and transition probabilities are
unknown.
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Optimality
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Optimality

- Theorem
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Optimality

- Theorem

There exists at least one policy 7* (and perhaps many) such
that V7 (s) > V7(s) for all policies = and states s of the MDP.
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Optimality

- Theorem
There exists at least one policyﬁ (and perhaps many) such

that V7 (s) > V7(s) for all policies = and states s of the MDP.

- Notation
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Optimality

- Theorem

There exists at least one policy 7* (and perhaps many) such
that V7 (s) > V7(s) for all policies = and states s of the MDP.

- Notation

Vi(s) =
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Optimality

- Theorem

There exists at least one policy 7* (and perhaps many) such
that V7 (s) > V7(s) for all policies = and states s of the MDP.

- Notation

Vis) = VT (s)
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Optimality

- Theorem

There exists at least one policy 7* (and perhaps many) such
that V7 (s) > V7(s) for all policies = and states s of the MDP.

- Notation

Vis) = VT (s)
Q*(S,O) =
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Optimality

- Theorem

There exists at least one policy 7* (and perhaps many) such
that V7 (s) > V7(s) for all policies = and states s of the MDP.

- Notation
Vi(s) = V(s)
Q*(s,a) = Q" (s,q)
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Optimality

- Theorem

There exists at least one policy 7* (and perhaps many) such
that V7 (s) > V7(s) for all policies = and states s of the MDP.

- Notation
_=Vi(s) = VT(s)
) Q*(Sa O) - Qﬂ- (Sa G)

These optimal value functions are unique.
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Optimality

- Theorem

There exists at least one policy 7* (and perhaps many) such
that V7 (s) > V7(s) for all policies = and states s of the MDP.

- Notation
Vi(s) = V(s)
Q*(s,a) = Q" (s,q)

These optimal value functions are unique.
(All optimal policies share the same value functions.)
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Relations at optimality
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Relations at optimality

- From the optimal action value function:
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Relations at optimality

- From the optimal action value function:

Vi(s) =
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Relations at optimality

- From the optimal action value function:

Vi(s) = max [Q*(S,U)]
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Relations at optimality

- From the optimal action value function:

Vi(s) = max [Q*(S,U)]
7*(s) =
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Relations at optimality

- From the optimal action value function:

VE(s) = max[Q*(s,a)] "V/

m = S—
7(s) = argmax |:Q* s, 0)] “S\Y\ble ch"’ov‘
= =

— \
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Relations at optimality

- From the optimal action value function:
VE(s) = max[Q*(s,a)]
T*(s) = argmax {Q*(S, G)]

- From the optimal state value function:
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Relations at optimality

- From the optimal action value function:
VE(s) = max[Q*(s,a)]
m*(s) = argmax {Q*(S, G)]
- From the optimal state value function:

Q*(s,a)
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Relations at optimality

- From the optimal action value function:

VE(s) = max[Q*(s,a)]
7(s) = argmax {Q*(S, G)]
- From the optimal state value function:

Q*(s,a)

+wz (s'|s, a)v*(s")
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Relations at optimality

- From the optimal action value function:

VE(s) = max[Q*(s,a)]
7(s) = argmax {Q*(S, G)]
- From the optimal state value function:

Q*(s,a)

+wz (s']s, a)V*(s")
(s) =
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Relations at optimality

- From the optimal action value function:

VE(s) = max[Q*(s,a)]
7(s) = argmax {Q*(S, G)]
- From the optimal state value function:

Q*(s,a)

+wz (s'|s, a)v*(s")

7*(s) = argpwax[ + '}/Z (s'ls,a)vV*(s )}
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Relations at optimality

- From the optimal action value function:

VE(s) = max[Q*(s,a)]
7(s) = argmax {Q*(S, G)]
- From the optimal state value function:

Q*(s,a)

+wz (s'|s, a)v*(s")

7*(s) = argpwax[ + '}/Z (s'ls,a)vV*(s )}

- Why are these relations useful?
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Relations at optimality

- From the optimal action value function:
VE(s) = max[Q*(s,a)]
m*(s) = argmax {Q*(S, 0)]
- From the optimal state value function:

Q*(s,a)

+wz (s'|s, a)v*(s")

7*(s) = argpwax[ + 'yz (s'ls,a)vV*(s )}

- Why are these relations useful?

Sometimes it can be easier to estimate Q*(s, a) or V*(s)
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Relations at optimality

- From the optimal action value function:

VE(s) = max[Q*(s,a)]
m*(s) = argmax {Q*(S, 0)]
- From the optimal state value function:

Q*(s,a)

+wz (s'|s, a)v*(s")

7*(s) = argpwax[ + 'yz (s'ls,a)vV*(s )}

- Why are these relations useful?

Sometimes it can be easier to estimate Q*(s, a) or V*(s)
(which are continuous)
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Relations at optimality

- From the optimal action value function:

VE(s) = max[Q*(s,a)]
m*(s) = argmax {Q*(S, 0)]
- From the optimal state value function:

Q*(s,a)

) + VZ (s'|s, a)v*(s")
T(s) = argmax[ + '}/Z (s'ls, a)V*(s )}
- Why are these relations useful?

Sometimes it can be easier to estimate Q*(s, a) or V*(s)
(which are continuous) than to learn 7*(s) (which is discrete)
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Planning in MDPs
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Planning in MDPs

Given a complete model of the agent and its environment
as a Markov decision process,
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as a Markov decision process, namely

MDP = {S,A,P(s'ls,a),R(S), 7},
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how can we efficiently compute
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how can we efficiently compute (i.e., in time polynomial in the
number of states) any of the following:
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Planning in MDPs

Given a complete model of the agent and its environment
as a Markov decision process, namely

MDP = {S,A,P(s'ls,a),R(S), 7},

how can we efficiently compute (i.e., in time polynomial in the
number of states) any of the following:

1. an optimal policy 7*(s)?
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Planning in MDPs

Given a complete model of the agent and its environment
as a Markov decision process, namely

MDP = {S,A,P(s'ls,a),R(S), 7},

how can we efficiently compute (i.e., in time polynomial in the
number of states) any of the following:

1. an optimal policy 7*(s)?
2. the optimal state value function V*(s)?
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Planning in MDPs

Given a complete model of the agent and its environment
as a Markov decision process, namely

MDP = {S,A,P(s'ls,a),R(S), 7},

how can we efficiently compute (i.e., in time polynomial in the
number of states) any of the following:

1. an optimal policy 7*(s)?
2. the optimal state value function V*(s)?

3. the optimal action value function Q*(s,a)?
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Planning in MDPs

Given a complete model of the agent and its environment
as a Markov decision process, namely

MDP = {S,A,P(s'ls,a),R(S), 7},

how can we efficiently compute (i.e., in time polynomial in the
number of states) any of the following:

1. an optimal policy 7*(s)?
2. the optimal state value function V*(s)?

3. the optimal action value function Q*(s,a)?

This is the problem of planning in MDPS.‘
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Algorithms
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Algorithms

1. Policy evaluation

How to compute V7™(s) for some fixed policy 7?
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Algorithms

1. Policy evaluation

How to compute V7™(s) for some fixed policy 7?

2. Policy improvement

How to compute a policy 7’ such that V™' (s) > V7(s)?
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Algorithms

1. Policy evaluation

How to compute V7™(s) for some fixed policy 7?

2. Policy improvement

How to compute a policy 7’ such that V™' (s) > V7(s)?

3. Policy iteration

How to compute an optimal policy 7*(s)?
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Policy evaluation
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Policy evaluation

- How to compute the state value function?
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Policy evaluation

- How to compute the state value function?

So :S]

Vi(s) = ET [Z 7'R(st)

t=0
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Policy evaluation

- How to compute the state value function?

So :S]

Vi(s) = ET [i 7'R(st)

t=0

- Bellman equation:
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Policy evaluation

- How to compute the state value function?

So :S]

VT(s) = R(S) + v Y P(s'Is,m(s)) V()

Vi(s) = ET [i 7'R(st)

t=0

- Bellman equation:
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Policy evaluation

- How to compute the state value function?

So :S]

VT(s) = R(S) + v Y P(s'Is,m(s)) V()

Vi(s) = ET [Z 7'R(st)

t=0

- Bellman equation:

- Solve linear system:

128 /269



Policy evaluation

- How to compute the state value function?

So :S]

VT(s) = R(S) + v Y P(s'Is,m(s)) V()

Vi(s) = ET [Z 7'R(st)

t=0

- Bellman equation:

- Solve linear system: There are n equations for n
unknowns (where s =1,2,...,n).

129 /269



Solving the linear system
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Solving the linear system

- From the Bellman equation:
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Solving the linear system

- From the Bellman equation:

V(s) = R(s) + v _P(s']s, m(s)) V().
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Solving the linear system

- From the Bellman equation:

V(s) = R(s) + v _P(s']s, m(s)) V().

- Rearranging terms:

133 /269



Solving the linear system

- From the Bellman equation:

V(s) = R(s) + v _P(s']s, m(s)) V().
K_/ s’

- Rearranging terms:

R(s) = V7(s) =y ) P(sls,m(s)V(s)
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Solving the linear system

- From the Bellman equation:

V(s) = R(s) + v _P(s']s, m(s)) V().

- Rearranging terms:

R(s) = V7(s) =y ) P(sls,m(s)V(s)

zz[

S/
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Solving the linear system

- From the Bellman equation:

V(s) = R(s) + v _P(s']s, m(s)) V().

- Rearranging terms:

R(s) = V7(s) =y ) P(sls,m(s)V(s)

= Z[ I(s,s")

S/
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Solving the linear system

- From the Bellman equation:

V(s) = R(s) + v _P(s']s, m(s)) V().

- Rearranging terms:

R(s) = V7(s) =y ) P(sls,m(s)V(s)

-3l

!/
S identity matrix
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Solving the linear system

- From the Bellman equation:

V(s) = R(s) + v _P(s']s, m(s)) V().

- Rearranging terms:

R(s) = V7(s) =y ) P(sls,m(s)V(s)

= Y[ 55) - P

!/
S identity matrix
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Solving the linear system

- From the Bellman equation:

V(s) = R(s) + v _P(s']s, m(s)) V().

- Rearranging terms:

R(s) = V7(s) =y ) P(sls,m(s)V(s)

— Z[ I(s,s") — ’yP(S’]S,ﬂ'(S))} V7T (s)

!/
S identity matrix
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Solving the linear system

- From the Bellman equation:

V(s) = R(s) + v _P(s']s, m(s)) V().

- Rearranging terms:

R(s) = V7(s) =y ) P(sls,m(s)V(s)

— Z[ I(s,s") — ’yP(S’]S,ﬂ'(S))} V7T (s)

!/
S identity matrix

- In matrix-vector form:
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Solving the linear system

- From the Bellman equation:

V(s) = R(s) + v _P(s']s, m(s)) V().

- Rearranging terms:

R(s) = V7(s) =y ) P(sls,m(s)V(s)

— Z[ I(s,s") — ’yP(S’]S,ﬂ'(S))} V7T (s)

!/
S identity matrix

- In matrix-vector form:

R = [/ —VP”] %
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Solving the linear system

- From the Bellman equation:

V(s) = R(s) + v _P(s']s, m(s)) V().

- Rearranging terms:

R(s) = V7(s) =y ) P(sls,m(s)V(s)

— Z[ I(s,s") — ’yP(S’]S,ﬂ'(S))} V7T (s)

/ S ——
S identity matrix

- In matrix-vector form:

R = [I—fyl?f]\/:]

column vector of _ n x n matrix column vector of
n known rewards (known) n unknown values
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Solving the linear system (con't)
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Solving the linear system (con't)

- Solution
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Solving the linear system (con't)

- Solution
R = {I—VP”}\/* —
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Solving the linear system (con't)

- Solution
R = {I—VP”}\/* — V' = (I—+P")'R
N————

matrix inverse
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Solving the linear system (con't)

- Solution

R = {I—VP”}\/* = V" = (I-yP") 'R
N————
matrix inverse

- Complexity
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Solving the linear system (con't)

- Solution
o [I_WPW}W — VT = (PR
———
matrix inverse

- Complexity

It takes O(n?) operations to solve this system of equations.
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Solving the linear system (con't)

- Solution
o [I_WPW}W — VT = (PR
SN———
. matrix inverse
- Complexity

It takes O(n?) operations to solve this system of equations.

- Example
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Solving the linear system (con't)

- Solution
o [I_WPW}W — VT = (PR
SN———
. matrix inverse
- Complexity

It takes O(n?) operations to solve this system of equations.

- Example

Let S = {1,2} and P(s'|s, w(s)) = 0.5 for all (s,s').
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Solving the linear system (con't)

- Solution
o [I_WPW}W — VT = (PR
SN———
. matrix inverse
- Complexity

It takes O(n?) operations to solve this system of equations.

- Example

Let S = {1,2} and P(s'|s, w(s)) = 0.5 for all (s,s').
ve() | _
V@) |
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Solving the linear system (con't)

- Solution
o [I_WPW}W — VT = (PR
SN———
. matrix inverse
- Complexity

It takes O(n?) operations to solve this system of equations.

- Example

Let S = {1,2} and P(s'|s, w(s)) = 0.5 for all (s,s').
vr(1) | 10
vT2) | 0 1
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Solving the linear system (con't)

- Solution
o [I_WPW}W — VT = (PR
SN———
. matrix inverse
- Complexity

It takes O(n?) operations to solve this system of equations.

- Example

Let S = {1,2} and P(s'|s, w(s)) = 0.5 for all (s,s').
ve() | 10 05 05\
vy | “ \lo 1| " 7|05 o5

153 /269



Solving the linear system (con't)

- Solution
- [I_VPW}V: = V" = (-7 'R
————
. matrix inverse C’
- Complexity

It takes O(n?) operations to solve this system of equations.

'
- Example g 0-(’7
Let S = {1,2} and P(s’|s,;£5_)) = 0.5 for all (s,5).

vr(l) | 10 205 03 TR
vy |~ (o 1 _,%7 0.5 0.5 RQ) |
(B
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Policy improvement
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Policy improvement

- Problem statement
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Policy improvement

- Problem statement

Given a policy w and its state value function V7(s),

157 / 269



Policy improvement

- Problem statement

Given a policy w and its state value function V7(s),
how to compute a policy 7’ such that
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Policy improvement

- Problem statement

Given a policy w and its state value function V7(s),
how to compute a policy 7’ such that

V™(s) > V7(s) for all states s?
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Policy improvement

- Problem statement

Given a policy w and its state value function V7(s),
how to compute a policy 7’ such that

V™(s) > V7(s) for all states s?

- Definition
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Policy improvement

- Problem statement

Given a policy w and its state value function V7(s),
how to compute a policy 7’ such that

V™(s) > V7(s) for all states s?

- Definition

Given the action value function Q"(s, a) for policy m, we
define the greedy policy 7’ by
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Policy improvement

- Problem statement

Given a policy w and its state value function V7(s),
how to compute a policy 7’ such that

V™(s) > V7(s) for all states s?

- Definition

Given the action value function Q"(s, a) for policy m, we
define the greedy policy 7’ by x\8

7
[Q“(s,a) :

—_—

7'(s) = argmax
= a
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Policy improvement

- Problem statement

Given a policy w and its state value function V7(s),
how to compute a policy 7’ such that

V™(s) > V7(s) for all states s?

- Definition

Given the action value function Q"(s, a) for policy m, we
define the greedy policy 7’ by

7'(s) = argmax [Q“(s,a)].
Why greedy?
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Policy improvement

- Problem statement

Given a policy w and its state value function V7(s),
how to compute a policy 7’ such that

V™(s) > V7(s) for all states s?

- Definition

Given the action value function Q"(s, a) for policy m, we
define the greedy policy 7’ by

7'(s) = argmax [Q“(s,a)].

Why greedy? Because we change the action in state s to

whatever appears to improve the expected return.
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Greedy policies
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Greedy policies

- In terms of the state value function:
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Greedy policies

- In terms of the state value function:

'(s) = argmax [Q”(S,a)}
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Greedy policies

- In terms of the state value function: .
&pl\o\*"
7'(s) = argmax [Q”(S, a)} T ob"e("ﬁm
a 7, o~
= argmax [ )+ WZ (s |S a) ')}
a ——
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Greedy policies

- In terms of the state value function:

()

argmax
a

argmax |R(s
a

argmax
a

Q”(s,a)}
+vz (s'|s,a) V™ (s )}

_ZS, (s, @) V(")
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Greedy policies

- In terms of the state value function:

7'(s) = argmax Q”(S,a)}
= arg(gnax —I—WZ (s'|s,a) V™ (s )}
= argmax _ZS, (s']s,a) V(s )}

- Test your understanding:
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Greedy policies

- In terms of the state value function:

7'(s) = argmax Q”(S,a)}
= arg(gnax —I—WZ (s'|s,a) V™ (s )}
= argmax _ZS, (s']s,a) V(s )}

- Test your understanding:

7'(s) = w(s) for some s € §?
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Greedy policies

- In terms of the state value function:

7'(s) = argmax Q”(S,a)}
= arg(gnax —I—WZ (s'|s,a) V™ (s )}
= argmax _ZS, (s']s,a) V(s )}

- Test your understanding:

7'(s) = w(s) for some s € §? not necessarily
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Greedy policies

- In terms of the state value function:

7'(s) = argmax Q”(S,a)}
= arg(gnax —I—WZ (s'|s,a) V™ (s )}
= argmax _ZS, (s']s,a) V(s )}

- Test your understanding:

7'(s) = w(s) for some s € §? not necessarily

7'(s) # w(s) for some s € S?
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Greedy policies

- In terms of the state value function:

7'(s) = argmax Q”(S,a)}
= arg(gnax —I—WZ (s'|s,a) V™ (s )}
= argmax _ZS, (s']s,a) V(s )}

- Test your understanding:

7'(s) = w(s) for some s € §? not necessarily

7'(s) # w(s) for some s € §? not necessarily
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Greedy policies

- In terms of the state value function:

7'(s) = argmax Q”(S,a)}
= arg(gnax —I—WZ (s'|s,a) V™ (s )}
= argmax _ZS, (s']s,a) V(s )}

- Test your understanding:

7'(s) = w(s) for some s € §? not necessarily
7'(s) # w(s) for some s € §? not necessarily

Q™(s,7'(s)) > Q"(s,n(s)) forall s € §?
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Greedy policies

- In terms of the state value function:

7'(s) = argmax Q”(S,a)}
= arg(gnax —I—WZ (s'|s,a) V™ (s )}
= argmax _ZS, (s']s,a) V(s )}

- Test your understanding:

7'(s) = w(s) for some s € §? not necessarily
7'(s) # w(s) for some s € §? not necessarily

Q™(s,7'(s)) > Q"(s,n(s)) foralls e S?  TRUE
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Policy improvement

177/ 269



Policy improvement

- Greedy policy:
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Policy improvement

- Greedy policy:

7'(s) = argmax Q"(s,a)
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Policy improvement

- Greedy policy:

7'(s) = argmax Q"(s,a)

- Theorem:
The greedy policy 7/(s) = arg maxq Q™ (S, a) improves
everywhere on the policy = from which it was derived:
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Policy improvement

- Greedy policy:
7'(s) = argmax Q"(s,a)
- Theorem:

The greedy policy 7/(s) = arg maxq Q™ (S, a) improves
everywhere on the policy = from which it was derived:

V™ (s) >V7(s) forallstatesseS
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Policy improvement

- Greedy policy:
7'(s) = argmax Q"(s,a)

- Theorem:
The greedy policy 7/(s) = arg maxq Q™ (S, a) improves
everywhere on the policy = from which it was derived:

V™ (s) >V7(s) forallstatesseS

« Intuition:
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Policy improvement

- Greedy policy:
7'(s) = argmax Q"(s,a)
- Theorem:

The greedy policy 7/(s) = arg maxq Q™ (S, a) improves
everywhere on the policy = from which it was derived:

V™ (s) >V7(s) forallstatesseS

« Intuition:

If it's better to choose action a in state s before following
m, then it's always better to make this choice.

183 /269



Policy improvement

- Greedy policy:

7'(s) = argmax Q"(s,a)

- Theorem:
The greedy policy 7/(s) = arg maxq Q™ (S, a) improves
everywhere on the policy = from which it was derived:

V™ (s) >V7(s) forallstatesseS

- Intuition:
If it's better to choose action a in state s before following
m, then it's always better to make this choice.

- Proof idea:
We'll prove a key inequality for one-step deviations from m,

then we'll extend this inequality by an iterative argument.
184 [ 269



Proof — 1. Deriving the inequality
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Proof — 1. Deriving the inequality

- Comparing value functions:
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Proof — 1. Deriving the inequality

- Comparing value functions:

Vi(s) = Q7(s,m(s))
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Proof — 1. Deriving the inequality

- Comparing value functions:

Vi(s) = Q7(s,m(s))
< mg]xQ"(S,a)
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Proof — 1. Deriving the inequality

- Comparing value functions:

Vi(s) = Q7(s,m(s))
< mg]xQ"(S,a)

= Q7(s,7(s))
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Proof — 1. Deriving the inequality

- Comparing value functions:
Vi(s) = Q%(s,7(s))
< mg]xQ"(S,a)
= Q"(s,7(s))
= R(S)+7 Y P(Sls,w(s))V7(s")
>
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Proof — 1. Deriving the inequality

- Comparing value functions:

Vi(s) = Q7(s,m(s))
< mg]xQ"(S,a)

= Q7(s,7(s))
= R(s)+7 ) P(s'Is,w(s)V7(s")

- Combining these steps:
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Proof — 1. Deriving the inequality

- Comparing value functions:
Vi(s) = Q%(s,7(s))
< mg]xQ"(S,a)
= O”(S '(s))
= +72 (s|s, 7' (s))V™(s")

- Combining these steps:

VT(s) < R(s)+7 Y _P(s|s, 7 (s))V7(s)
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Proof — 1. Deriving the inequality

- Comparing value functions:
Vi(s) = Q%(s,7(s))
< mg]xQ"(S,a)
= O”(S '(s))
= +72 (s|s, 7' (s))V™(s")

- Combining these steps:

VT(s) < R(s)+7 Y _P(s|s, 7 (s))V7(s)

- Intuition:
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Proof — 1. Deriving the inequality

- Comparing value functions:
Vi(s) = Q%(s,7(s))
< mg]xQ"(S,a)
= Q"(s,7(s))
= R(S)+7 Y P(Sls,w(s))V7(s")
>

- Combining these steps:

VT(s) < R(s)+7 Y _P(s|s, 7 (s))V7(s)

- Intuition:

It is better to take one step under 7/, then revert to ,
than to always follow .
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Proof — 2. Leveraging the inequality
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Proof — 2. Leveraging the inequality

- One-step inequality:
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Proof — 2. Leveraging the inequality

- One-step inequality:
VT(s) < R(S)+7 ) _P(s'ls, ' (s))V"(s)

What happens if we plug this inequality into itself?
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Proof — 2. Leveraging the inequality

- One-step inequality:
VT(s) < R(S)+7 ) _P(s'ls, ' (s))V"(s)

What happens if we plug this inequality into itself?
Then we obtain ...
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Proof — 2. Leveraging the inequality

- One-step inequality:
VT(s) < R(S)+7 ) _P(s'ls, ' (s))V"(s)

What happens if we plug this inequality into itself?
Then we obtain ...

- Two-step inequality:
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Proof — 2. Leveraging the inequality

- One-step inequality:
VT(s) < R(S)+7 ) _P(s'ls, ' (s))V"(s)

What happens if we plug this inequality into itself?
Then we obtain ...

- Two-step inequality:

V() < R(s)+7 ) _P(S'Is,m(s)) |R(s) + 7 D> P(s"[s". 7' (s)V7(s")
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Proof — 2. Leveraging the inequality

- One-step inequality:
VT(s) < R(S)+7 ) _P(s'ls, ' (s))V"(s)

What happens if we plug this inequality into itself?
Then we obtain ...

- Two-step inequality:

V() < R(s)+7 ) _P(S'Is,m(s)) |R(s) + 7 D> P(s"[s". 7' (s)V7(s")

- Intuition:
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Proof — 2. Leveraging the inequality

- One-step inequality:
VT(s) < R(S)+7 ) _P(s'ls, ' (s))V"(s)

What happens if we plug this inequality into itself?
Then we obtain ...

- Two-step inequality:

V() < R(s)+7 ) _P(S'Is,m(s)) |R(s) + 7 D> P(s"[s". 7' (s)V7(s")

- Intuition:

It is better to take two steps under «’, then revert to ,
than to always follow .
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Proof — 3. Taking the limit
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Proof — 3. Taking the limit

- Two-step inequality:
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Proof — 3. Taking the limit

- Two-step inequality:

V7(s) < R(S)+1 ZP(5’|5,7r/(s)) [R(s/) + 1 ZP(SNS/,W/(S/))VW(SN):|

s/t
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Proof — 3. Taking the limit

- Two-step inequality:

V7(s) < R(S)+1 ZP(5’|5,7r/(s)) [R(s/) + 1 ZP(SNS/,W/(S/))VW(SN):|

s/t

- Apply the inequality t times:
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Proof — 3. Taking the limit

- Two-step inequality:
V7(s) < R(S)+1 ZP(5’|5,7r/(s)) [R(s/) + 1 ZP(SNS/,W/(S/))VW(SN):|
- Apply the inequality t times:

It is better to take t steps under «’/, then revert to m,
than to always follow 7.
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Proof — 3. Taking the limit

- Two-step inequality:
V7(s) < R(S)+1 ZP(5’|5,7r/(s)) [R(s/) + 1 ZP(SNS/,W/(S/))VW(SN):|
- Apply the inequality t times:

It is better to take t steps under «’/, then revert to m,
than to always follow 7. Last term is of order O(4").
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Proof — 3. Taking the limit

- Two-step inequality:

V7(s) < R(S)+1 ZP(5’|5,7r/(s)) [R(s/) + 1 ZP(SNS/,W/(S/))VW(SN):|

- Apply the inequality t times:
It is better to take t steps under «’/, then revert to m,

than to always follow 7. Last term is of order O(~").

- Take the limit t — oc:
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Proof — 3. Taking the limit

- Two-step inequality:
V7(s) < R(S)+1 ZP(S/|S,71'/(S)) [R(s/) + 1 ZP(SNS/,W/(S/))VW(SN):|
- Apply the inequality t times:

It is better to take t steps under «’/, then revert to m,
than to always follow 7. Last term is of order O(4").

- Take the limit t — oc:

It is better to follow 7 (always) than to follow 7 (always).
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Proof — 3. Taking the limit

- Two-step inequality:
V7(s) < R(S)+1 ZP(S/|S,71'/(S)) [R(s/) + 1 ZP(SNS/,W/(S/))VW(SN):|
- Apply the inequality t times:

It is better to take t steps under «’/, then revert to m,
than to always follow 7. Last term is of order O(4").

- Take the limit t — oc:

It is better to follow 7 (always) than to follow 7 (always).
Conclude that V™(s) < V™(s) for all states s € S.

211/ 269



Policy iteration
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Policy iteration

How to compute 7*?
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Policy iteration

How to compute 7*?

1. Choose an initial policy 7 : S — A.
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Policy iteration

How to compute 7*?
1. Choose an initial policy 7 : S — A.

2. Repeat until convergence:
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Policy iteration

How to compute 7*?
1. Choose an initial policy 7 : S — A.

2. Repeat until convergence:

Compute the action value function Q™(s, a).
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Policy iteration

How to compute 7*?
1. Choose an initial policy 7 : S — A.

2. Repeat until convergence:

Compute the action value function Q™(s, a).
Compute the greedy policy 7'(s) = argmaxq Q7 (s, a).
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Policy iteration

How to compute 7*?
1. Choose an initial policy 7 : S — A.

2. Repeat until convergence:

Compute the action value function Q™(s, a).
Compute the greedy policy 7'(s) = argmaxq Q7 (s, a).
Replace 7 by 7.
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Policy iteration

How to compute 7*?
1. Choose an initial policy 7 : S — A.

2. Repeat until convergence:

Compute the action value function Q™(s, a).
Compute the greedy policy 7'(s) = argmaxq Q7 (s, a).
Replace 7 by 7.

0
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Policy iteration

How to compute 7*?
1. Choose an initial policy 7 : S — A.

2. Repeat until convergence:

Compute the action value function Q™(s, a).
Compute the greedy policy 7'(s) = argmaxq Q7 (s, a).
Replace 7 by 7.

evaluate
) —_—
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Policy iteration

How to compute 7*?
1. Choose an initial policy 7 : S — A.

2. Repeat until convergence:

Compute the action value function Q™(s, a).
Compute the greedy policy 7'(s) = argmaxq Q7 (s, a).
Replace 7 by 7.

evaluate V7o (s)
) —_—
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Policy iteration

How to compute 7*?
1. Choose an initial policy 7 : S — A.

2. Repeat until convergence:

Compute the action value function Q™(s, a).
Compute the greedy policy 7'(s) = argmaxq Q7 (s, a).
Replace 7 by 7.

evaluate V7o (s)

Q™o(s,a)

0
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Policy iteration

How to compute 7*?
1. Choose an initial policy 7 : S — A.

2. Repeat until convergence:

Compute the action value function Q™(s, a).
Compute the greedy policy 7'(s) = argmaxq Q7 (s, a).
Replace 7 by 7.

evaluate V™o (s) improve

Q™o(s,a)

0
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Policy iteration

How to compute 7*?
1. Choose an initial policy 7 : S — A.

2. Repeat until convergence:

Compute the action value function Q™(s, a).
Compute the greedy policy 7'(s) = argmaxq Q7 (s, a).
Replace 7 by 7.

evaluate V™o (s) improve evaluate

—
o Q™ (s, a) B
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Policy iteration

How to compute 7*?
1. Choose an initial policy 7 : S — A.

2. Repeat until convergence:

Compute the action value function Q™(s, a).
Compute the greedy policy 7'(s) = argmaxq Q7 (s, a).
Replace 7 by 7.

evaluate V7o (s) improve evaluate V™i(s)
E—

—
o Q™ (s, a) B
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Policy iteration

How to compute 7*?
1. Choose an initial policy 7 : S — A.

2. Repeat until convergence:

Compute the action value function Q™(s, a).
Compute the greedy policy 7'(s) = argmaxq Q7 (s, a).
Replace 7 by 7.

evaluate V™o (s) improve evaluate Vi
sl —_—

1
Q”O(S,G) Qm(

0
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Policy iteration

How to compute 7*?
1. Choose an initial policy 7 : S — A.

2. Repeat until convergence:

Compute the action value function Q™(s, a).
Compute the greedy policy 7'(s) = argmaxq Q7 (s, a).
Replace 7 by 7.

evaluate V™o (s) improve evaluate Vi
sl —_—

1
Q”O(S,G) Qm(

improve
)
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Policy iteration

How to compute 7*?
1. Choose an initial policy 7 : S — A.

2. Repeat until convergence:

Compute the action value function Q™(s, a).
Compute the greedy policy 7'(s) = argmaxq Q7 (s, a).
Replace 7 by 7.

evaluate V™o (s) improve evaluate Vi
sl —_—

1
Q”O(S,G) Q7\'1(

improve

0 _ ...

Policy iteration is guaranteed to terminate.

True (A) or False (B)?
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Policy iteration
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Policy iteration

- How to compute 7*?
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Policy iteration

- How to compute 7*?

evaluate V™o(s) improve evaluate

—> o
o Q™ (s, a) i
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Policy iteration

- How to compute 7*?

evaluate V™o(s) improve evaluate

—> o
o Q™ (s, a) i

This process is guaranteed to terminate.
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Policy iteration

- How to compute 7*?

evaluate V™o(s) improve evaluate

—> o
o Q™ (s, a) i

This process is guaranteed to terminate.
But does it converge to an optimal policy?

233 /269



Policy iteration

- How to compute 7*?

evaluate V™o(s) improve evaluate

—> o
o Q™ (s, a) i

This process is guaranteed to terminate.
But does it converge to an optimal policy?

+ Theorem
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Policy iteration

- How to compute 7*?

evaluate V™o(s) improve evaluate

—> —> o
o Q™ (s, a) i

This process is guaranteed to terminate.
But does it converge to an optimal policy?

+ Theorem

If 7/(s) = arg maxq Q(s,a) and V™'(s) = V7(s) forall s € S,
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Policy iteration

- How to compute 7*?

evaluate V™o(s) improve evaluate
Ty — _ M — -
Q™ (s,a)

This process is guaranteed to terminate.
But does it converge to an optimal policy?

+ Theorem

If 7/(s) = arg maxq Q(s,a) and V™'(s) = V7(s) forall s € S,
then V7(s) = V*(s) forall s € S.
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Policy iteration

- How to compute 7*?

evaluate V™o(s) improve evaluate

—> o
o Q™ (s, a) i

This process is guaranteed to terminate.
But does it converge to an optimal policy?

+ Theorem

If 7/(s) = arg maxq Q(s,a) and V™'(s) = V7(s) forall s € S,
then V7(s) = V*(s) forall s € S.

- Proof idea
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Policy iteration

- How to compute 7*?

evaluate V™o(s) improve evaluate

—> o
o Q™ (s, a) i

This process is guaranteed to terminate.
But does it converge to an optimal policy?

- Theorem
If 7/(s) = arg maxq Q(s,a) and V™'(s) = V7(s) forall s € S,
then V7(s) = V*(s) forall s € S.

- Proof idea

Prove a key equality/inequality for terminal/non-terminal
policies;
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Policy iteration

- How to compute 7*?

evaluate V™o(s) improve evaluate

—> o
o Q™ (s, a) i

This process is guaranteed to terminate.
But does it converge to an optimal policy?

- Theorem
If 7/(s) = arg maxq Q(s,a) and V™'(s) = V7(s) forall s € S,
then V7(s) = V*(s) forall s € S.

- Proof idea

Prove a key equality/inequality for terminal/non-terminal
policies; iterate t times, then compare the limits as t — oc.
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Proof — 1. Bellman optimality equation
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Proof — 1. Bellman optimality equation

- Suppose policy iteration converges to 7.
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Proof — 1. Bellman optimality equation

- Suppose policy iteration converges to 7.

V(s) = R(s)+ D P(s'ls,7(s))V" () |Bellman equation]|

242 [ 269



Proof — 1. Bellman optimality equation

- Suppose policy iteration converges to 7.

V(s) = R(s)+ D P(s'ls,7(s))V" () |Bellman equation]|

R(s) + 73 P(S'ls 7 (9)V7(S")
s/

V7(s)
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Proof — 1. Bellman optimality equation

- Suppose policy iteration converges to 7.

V(s) = R(s)+ D P(s'ls,7(s))V" () |Bellman equation]|

R(s) + 73 P(S'ls 7 (9)V7(S")
s/

Now exploit that " is greedy with respect to = ...

V7(s)
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Proof — 1. Bellman optimality equation

- Suppose policy iteration converges to 7.

V(s) = R(s)+ D P(s'ls,7(s))V" () |Bellman equation]|

R(s) + 73 P(S'ls 7 (9)V7(S")
s/

Now exploit that " is greedy with respect to = ...

V7(s)

- Bellman optimality equation
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Proof — 1. Bellman optimality equation

- Suppose policy iteration converges to 7.

V(s) = R(s)+ D P(s'ls,7(s))V" () |Bellman equation]|

R(s) + 73 P(S'ls 7 (9)V7(S")
s/

Now exploit that " is greedy with respect to = ...

V7(s)

- Bellman optimality equation

V™(s) = R(s) + ymﬁngP(sﬂs, a)V™(s')

X
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Proof — 1. Bellman optimality equation

- Suppose policy iteration converges to 7.

V(s) = R(s)+ D P(s'ls,7(s))V" () |Bellman equation]|

R(s) + 73 P(S'ls 7 (9)V7(S")
s/

Now exploit that " is greedy with respect to = ...

V7(s)

- Bellman optimality equation

V™(s) = R(s) + ymﬁngP(sﬂs, a)V™(s')

X

These equations are nonlinear due to the max operation.
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Proof — 1. Bellman optimality equation

- Suppose policy iteration converges to 7.

V(s) = R(s) + VZ P(s'|s, 7 (s))V" (s") ’ Bellman equation ‘

R(s) + 73 P(S'ls 7 (9)V7(S")
s/

Now exploit that " is greedy with respect to = ...

V7(s)

- Bellman optimality equation

V™(s) = R(s) + ’ymﬁaxZP(SﬂS, a)V™(s')

X

These equations are nonlinear due to the max operation.
There are n equations for n unknowns (where s =1,2,...,n).
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Proof — 2. Inequality
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Proof — 2. Inequality

- Let 7 be any policy of the MDP:
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Proof — 2. Inequality

- Let 7 be any policy of the MDP:

Vi(s) = R(s) + > _P(s'ls, #(s))V"(s") ’ Bellman equation
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Proof — 2. Inequality

- Let 7 be any policy of the MDP:

Vi(s) = R(s) + > _P(s'ls, #(s))V"(s") ’ Bellman equation‘

VA (s) R(s) + ymax >~ P(s'[s,a)V"(s)
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Proof — 2. Inequality

- Let 7 be any policy of the MDP:

Vi(s) = R(s) + > _P(s'ls, #(s))V"(s") ’ Bellman equation‘
Vi) < R(s) + ymax Y P(s'ls, a)V*(s)

- Compare to Bellman optimality equation (BOE):
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Proof — 2. Inequality

- Let 7 be any policy of the MDP:

Vi(s) = R(s) + > _P(s'ls, #(s))V"(s") ’ Bellman equation‘
Vi) < R(s) + ymax Y P(s'ls, a)V*(s)

- Compare to Bellman optimality equation (BOE):

VT (s) R(s) + v muaxz P(s'|s,a))V™(s")

s/
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Proof — 2. Inequality

- Let 7 be any policy of the MDP:

Vi(s) = R(s) + > _P(s'ls, #(s))V"(s") ’ Bellman equation ‘
Vi) < R(s) + ymax Y P(s'ls, a)V*(s)
- Compare to Bellman optimality equation (BOE):

VT (s) R(s) + v muaxz P(s'|s,a))V™(s")

s/

- Understanding the difference:

255 /269



Proof — 2. Inequality

- Let 7 be any policy of the MDP:

Vi(s) = R(s) + > _P(s'ls, #(s))V"(s") ’ Bellman equation‘
Vi) < R(s) + ymax Y P(s'ls, a)V*(s)

- Compare to Bellman optimality equation (BOE):

VT (s) R(s) + v muaxz P(s'|s,a))V™(s")

s/

- Understanding the difference:

The inequality holds for any policy 7 of the MDP.
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Proof — 2. Inequality

- Let 7 be any policy of the MDP:

Vi(s) = R(s) + > _P(s'ls, #(s))V"(s") ’ Bellman equation‘
Vi) < R(s) + ymax Y P(s'ls, a)V*(s)

- Compare to Bellman optimality equation (BOE):

VT (s) R(s) + v muaxz P(s'|s,a))V™(s")

s/

- Understanding the difference:

The inequality holds for any policy 7 of the MDP.
The BOE only holds for a solution « from policy iteration.
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Proof — 3. Taking the limit
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Proof — 3. Taking the limit

- Iterating the inequality:
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Proof — 3. Taking the limit

- Iterating the inequality:

VE(s) < R(s) + wmgxzslP(s’ls,a)V’”’(s’)
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Proof — 3. Taking the limit

- Iterating the inequality:
VE(s) < R(s) + wmgxzslP(s’ls,a)V’”’(s’)

< R(s) +’ymaaxZS/P(s'|s7a)[ ) + ,maxz (s"|s", a7 (s )}
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Proof — 3. Taking the limit

- Iterating the inequality:
VA(s) < R(s) + wmgxzs/P(s’ls,a)V’”’(s’)

< R(S)—i—vmaaxZS/P(s'|S7a){ +wmaxz (s"|s", a7 (s )}

- Iterating the BOE:
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Proof — 3. Taking the limit

- Iterating the inequality:
VA(s) < R(s) + wmgxzs/P(s’ls,a)V’”’(s’)

< R(S)—i—vmaaxZS/P(s'|S7a){ +wmaxz (s"|s", a7 (s )}

- Iterating the BOE:
VT(s) = R(s) + v mfxzs,P(5'|Sva)V”(s/)
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Proof — 3. Taking the limit

- Iterating the inequality:
VA(s) < R(s) + wmgxzs/P(s’ls,a)V’”’(s’)

< R(S)—i—vmaaxZS/P(s'|S7a){ +wmaxz (s"|s", a7 (s )}

- Iterating the BOE:
VT(s) = R(s) + v mfxzs,P(5'|Sva)V”(s/)
= R(s) + vmaaxZS/P(s’b,a) [ ) 4+~ maxz P(s"|s", ')V (s )}

264 [ 269



Proof — 3. Taking the limit

- Iterating the inequality:
VA(s) < R(s) + wmgxzs/P(s’ls,a)V’”’(s’)

< R(S)—i—vmaaxZS/P(s'|S7a){ +wmaxz (s"|s", a7 (s )}

- Iterating the BOE:
VT(s) = R(s) + v mfxzs,P(5'|Sva)V”(s/)

R(s) + ymax )y P(s'|s,a) |R( [ )+ maxz P(s”|s", a" V7 (s’ )}

- Iterating t times:
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Proof — 3. Taking the limit

- Iterating the inequality:
VA(s) < R(s) + wmgxzs/P(s’ls,a)V’”’(s’)

< R(S)—i—vmaaxZS/P(s'|S7a){ +wmaxz (s"|s", a7 (s )}

- Iterating the BOE:
VT(s) = R(s) + v mfxzs,P(5'|Sva)V”(s/)

R(s) + ymax )y P(s'|s,a) |R( [ )+ maxz P(s”|s", a" V7 (s’ )}

- Iterating t times:

Both right sides agree up to term of order ~'.
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Proof — 3. Taking the limit

- Iterating the inequality:
VA(s) < R(s) + wmgxzs/P(s’ls,a)V’”’(s’)

< R(S)—i—vmaaxZS/P(s'|S7a){ +wmaxz (s"|s", a7 (s )}

- Iterating the BOE:
VT(s) = R(s) + v mfxzs,P(5'|Sva)V”(s/)

R(s) + ymax )y P(s'|s,a) |R( [ )+ maxz P(s”|s", a" V7 (s’ )}

- Iterating t times:

Both right sides agree up to term of order ~'.
Taking the limit t — oo, we find V#(s) < vV™(s) foralls € S.
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Proof — 3. Taking the limit

- Iterating the inequality:
VA(s) < R(s) + wmgxzs/P(s’ls,a)V’”’(s’)

< R(S)—i—vmaaxZS/P(s'|S7a){ +wmaxz (s"|s", a7 (s )}

- Iterating the BOE:
VT(s) = R(s) + v mfxzs,P(5'|Sva)V”(s/)
= R(s) + vmaaxZS/P(s’b,a) [ ) 4+~ maxz P(s"|s", ')V (s )}

- Iterating t times:

Both right sides agree up to term of order ~'.
Taking the limit t — oo, we find V#(s) < vV™(s) foralls € S.

Since 7 is arbitrary, we conclude that = is optimal ‘
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That's all folks!

269 / 269



